Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38761209

RESUMEN

The defect in the hepatobiliary transport system results in an impairment of bile flow, leading to accumulation of toxic compounds with subsequent liver disorders. Vincamine, a plant indole alkaloid that is utilized as a dietary supplement, has been known for its promising pharmacological activities. For the first time, the present study was planned to estimate, at the molecular level, the potentiality of vincamine against alfa-naphthyl isothiocyanate (ANIT)-induced hepatic cholestasis. Liver function tests were analyzed. Hepatic activity of SOD and levels of GSH and MDA were assessed. Hepatic contents of bax, bcl2, NF-kB, PPARγ, catalase, heme-oxygenase-1, NTCP, and BSEP were evaluated using ELISA. mRNA levels of NF-kB, IL-1ß, IL-6, TNFα, PDGF, klf6, PPARγ, and P53 were examined using qRT-PCR. PI3K, Akt and cleaved caspase-3 proteins were assessed using western blotting. Histopathological analyses were performed using hematoxylin & eosin staining. ANIT-induced hepatic cholestasis elevated liver function tests, including AST, ALT, GGT, ALP, and total bilirubin. ANIT reduced the protein expression of NTCP and BSEP hepatic transporters. It induced the expression of the inflammatory genes, TNFα, IL-6, IL-1ß, and PDGF, and the expression of NF-kB at the genetic and protein level and suppressed the anti-inflammatory genes, klf6 and PPARγ. Also, antioxidant markers were reduced during ANIT induction such as GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway, while MDA levels were elevated. Furthermore, the expression of P53 gene, bax and cleaved caspase 3 proteins were activated, while bcl2 was inhibited. Also, the histopathological analysis showed degeneration of hepatocytes and inflammatory cellular infiltrates. However, vincamine treatment modulated all these markers. It improved liver function tests. It inhibited the expression of NF-kB, TNFα, IL-6, IL-1ß and PDGF and activated the expression of klf6 and PPARγ. Furthermore, vincamine reduced MDA levels and induced GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway. Additionally, it inhibited expression of P53 gene, bax and cleaved caspase 3 proteins. More interestingly, vincamine showed better outcomes on the hepatic histopathological analysis and improved the alterations induced by ANIT. Vincamine alleviated hepatic dysfunction during ANIT-induced intrahepatic cholestasis through its anti-inflammatory and antioxidant efficacies by the modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways.

2.
Stem Cell Rev Rep ; 19(1): 67-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36008597

RESUMEN

Epigenetic regulation of gene expression represents an important mechanism in the maintenance of stem cell function. Alterations in epigenetic regulation contribute to the pathogenesis of hematological malignancies. Plant homeodomain finger protein 6 (PHF6) is a member of the plant homeodomain (PHD)-like zinc finger family of proteins that is involved in transcriptional regulation through the modification of the chromatin state. Germline mutation of PHF6 is the causative genetic alteration of the X-linked mental retardation Borjeson-Forssman-Lehmann syndrome (BFLS). Somatic mutations in PHF6 are identified in human leukemia, such as adult T-cell acute lymphoblastic leukemia (T-ALL, ~ 38%), pediatric T-ALL (~ 16%), acute myeloid leukemia (AML, ~ 3%), chronic myeloid leukemia (CML, ~ 2.5%), mixed phenotype acute leukemia (MPAL, ~ 20%), and high-grade B-cell lymphoma (HGBCL, ~ 3%). More recent studies imply an oncogenic effect of PHF6 in B-cell acute lymphoblastic leukemia (B-ALL) and solid tumors. These data demonstrate that PHF6 could act as a double-edged sword, either a tumor suppressor or an oncogene, in a lineage-dependent manner. However, the underlying mechanisms of PHF6 in normal hematopoiesis and leukemogenesis remain largely unknown. In this review, we summarize current knowledge of PHF6, emphasizing the role of PHF6 in hematological malignancies. Epigenetic regulation of PHF6 in B-ALL. PHF6 maintains a chromatin structure that is permissive to B-cell identity genes, but not T-cell-specific genes (left). Loss of PHF6 leads to aberrant expression of B-cell- and T-cell-specific genes resulting from lineage promiscuity and binding of T-cell transcription factors (right).


Asunto(s)
Neoplasias Hematológicas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Niño , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Epigénesis Genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Neoplasias Hematológicas/genética , Cromatina , Hematopoyesis/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...