Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4743, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959386

RESUMEN

Electron systems with strong geometrical frustrations have flat bands, and their unusual band dispersions are expected to induce a wide variety of physical properties. However, for the emergence of such properties, the Fermi level must be pinned within the flat band. In this study, we performed first-principles calculations on pyrochlore oxide Pb[Formula: see text]Sb[Formula: see text]O[Formula: see text] and theoretically clarified that the self-doping mechanism induces pinning of the Fermi level in the flat band in this system. Therefore, a very high density of states is realized at the Fermi level, and the ferromagnetic state transforms into the ground state via a flat band mechanism, although the system does not contain any magnetic elements. This compound has the potential to serve as a new platform for projecting the properties of flat band systems in the real world.

2.
Sci Rep ; 12(1): 19132, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352252

RESUMEN

We have investigated the pinning potential of high-quality single crystals of superconducting material CaKFe4As4 having high critical current density and very high upper critical field using both magnetization relaxation measurements and frequency-dependent AC susceptibility. Preliminary studies of the superconducting transition and of the isothermal magnetization loops confirmed the high quality of the samples, while temperature dependence of the AC susceptibility in high magnetic fields show absolutely no dependence on the cooling conditions, hence, no magnetic history. From magnetization relaxation measurements were extracted the values of the normalized pinning potential U*, which reveals a clear crossover between elastic creep and plastic creep. The extremely high values of U*, up to 1200 K around the temperature of 20 K lead to a nearly zero value of the probability of thermally-activated flux jumps at temperatures of interest for high-field applications. The values of the creep exponents in the two creep regimes resulted from the analysis of the magnetization relaxation data are in complete agreement with theoretical models. Pinning potentials were also estimated, near the critical temperature, from AC susceptibility measurements, their values being close to those resulted (at the same temperature and DC field) from the magnetization relaxation data.

3.
Proc Natl Acad Sci U S A ; 119(37): e2207449119, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067325

RESUMEN

The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/ℏ and across the charge-transfer energy gap [Formula: see text], generate "superexchange" spin-spin interactions of energy [Formula: see text] in an antiferromagnetic correlated-insulator state. However, hole doping this CuO2 plane converts this into a very-high-temperature superconducting state whose electron pairing is exceptional. A leading proposal for the mechanism of this intense electron pairing is that, while hole doping destroys magnetic order, it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale [Formula: see text]. To explore this hypothesis directly at atomic scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of [Formula: see text] and the electron-pair density nP in Bi2Sr2CaCu2O8+x. The responses of both [Formula: see text] and nP to alterations in the distance δ between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge-transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive Bi2Sr2CaCu2O8+x.

4.
Proc Natl Acad Sci U S A ; 119(31): e2206481119, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35895680

RESUMEN

Electron-pair density wave (PDW) states are now an intense focus of research in the field of cuprate correlated superconductivity. PDWs exhibit periodically modulating superconductive electron pairing that can be visualized directly using scanned Josephson tunneling microscopy (SJTM). Although from theory, intertwining the d-wave superconducting (DSC) and PDW order parameters allows a plethora of global electron-pair orders to appear, which one actually occurs in the various cuprates is unknown. Here, we use SJTM to visualize the interplay of PDW and DSC states in Bi2Sr2CaCu2O8+x at a carrier density where the charge density wave modulations are virtually nonexistent. Simultaneous visualization of their amplitudes reveals that the intertwined PDW and DSC are mutually attractive states. Then, by separately imaging the electron-pair density modulations of the two orthogonal PDWs, we discover a robust nematic PDW state. Its spatial arrangement entails Ising domains of opposite nematicity, each consisting primarily of unidirectional and lattice commensurate electron-pair density modulations. Further, we demonstrate by direct imaging that the scattering resonances identifying Zn impurity atom sites occur predominantly within boundaries between these domains. This implies that the nematic PDW state is pinned by Zn atoms, as was recently proposed [Lozano et al., Phys. Rev. B 103, L020502 (2021)]. Taken in combination, these data indicate that the PDW in Bi2Sr2CaCu2O8+x is a vestigial nematic pair density wave state [Agterberg et al. Phys. Rev. B 91, 054502 (2015); Wardh and Granath arXiv:2203.08250].

5.
Nat Commun ; 12(1): 6087, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667154

RESUMEN

An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electron-density depletion in the CuO2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap [Formula: see text] in real-space, and a characteristic quasiparticle scattering interference (QPI) signature [Formula: see text] in wavevector space. By studying strongly underdoped Bi2Sr2CaDyCu2O8 at hole-density ~0.08 in the superconductive phase, we detect the 8a0-periodic [Formula: see text] modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature [Formula: see text] that is predicted specifically for the temperature dependence of an 8a0-periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d-wave superconductivity to a pure PDW state in the Bi2Sr2CaDyCu2O8 pseudogap phase.

6.
Proc Natl Acad Sci U S A ; 117(26): 14805-14811, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546526

RESUMEN

The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states [Formula: see text] is predicted at the terminal BiO surface of Bi2Sr2CaCu2O8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of [Formula: see text], the modulations of the coherence peak energy [Formula: see text] and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space [Formula: see text] Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi2Sr2CaCu2O8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.

7.
Phys Rev Lett ; 125(25): 257002, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416344

RESUMEN

High T_{c} superconductors show a rich variety of phases associated with their charge degrees of freedom. Valence charges can give rise to charge ordering or acoustic plasmons in these layered cuprate superconductors. While charge ordering has been observed for both hole- and electron-doped cuprates, acoustic plasmons have only been found in electron-doped materials. Here, we use resonant inelastic x-ray scattering to observe the presence of acoustic plasmons in two families of hole-doped cuprate superconductors (La_{1.84}Sr_{0.16}CuO_{4} and Bi_{2}Sr_{1.6}La_{0.4}CuO_{6+δ}), crucially completing the picture. Interestingly, in contrast to the quasistatic charge ordering which manifests at both Cu and O sites, the observed acoustic plasmons are predominantly associated with the O sites, revealing a unique dichotomy in the behavior of valence charges in hole-doped cuprates.

8.
Nat Commun ; 10(1): 5737, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844065

RESUMEN

Using angle resolved photoemission spectroscopy measurements of Bi2Sr2CaCu2O8+δ over a wide range of doping levels, we present a universal form for the non-Fermi liquid electronic interactions in the nodal direction in the exotic normal state phase. It is described by a continuously varying power law exponent versus energy and temperature (hence named a Power Law Liquid or PLL), which with doping varies smoothly from a quadratic Fermi Liquid in the overdoped regime, to a linear Marginal Fermi Liquid at optimal doping, to a non-quasiparticle non-Fermi Liquid in the underdoped regime. The coupling strength is essentially constant across all regimes and is consistent with Planckian dissipation. Using the extracted PLL parameters we reproduce the experimental optics and resistivity over a wide range of doping and normal-state temperature values, including the T* pseudogap temperature scale observed in the resistivity curves. This breaks the direct link to the pseudogapping of antinodal spectral weight observed at similar temperature scales and gives an alternative direction for searches of the microscopic mechanism.

9.
Sci Rep ; 9(1): 13064, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506470

RESUMEN

Improvement of the critical current density (Jc) of superconducting wires/tapes is one of the key issues in the field of superconductivity applications. Here we report the fabrication of a silver-sheathed Ba1-xNaxFe2As2 (BaNa-122) superconducting tape by using a powder-in-tube technique and its superconducting properties, in particular transport Jc, as well as the tape-core texture. The optimally-doped BaNa-122 tape with Na concentration x = 0.4 exhibits the superconducting critical temperature (Tc) of 33.7 K and high transport Jc of 4 × 104 A/cm2 at 4.2 K in a magnetic field of 4 T. Patterns of x-ray diffraction for the superconducting core show that the degree of c-axis orientation is significantly enhanced through the tape fabrication process. The tendency of c-axis orientation is advantageous for achieving higher Jc, suggesting the high potential of BaNa-122 for superconducting wire/tape applications.

10.
Nature ; 570(7762): 484-490, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31217587

RESUMEN

For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena1. Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science2-5. Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM)6-16, the next challenge is to apply this approach to experimental data-for example, to the arrays of complex electronic-structure images17 obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals18,19 are consistent with these observations.

11.
Science ; 364(6444): 976-980, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31171694

RESUMEN

High magnetic fields suppress cuprate superconductivity to reveal an unusual density wave (DW) state coexisting with unexplained quantum oscillations. Although routinely labeled a charge density wave (CDW), this DW state could actually be an electron-pair density wave (PDW). To search for evidence of a field-induced PDW, we visualized modulations in the density of electronic states N(r) within the halo surrounding Bi2Sr2CaCu2O8 vortex cores. We detected numerous phenomena predicted for a field-induced PDW, including two sets of particle-hole symmetric N(r) modulations with wave vectors QP and 2Q P , with the latter decaying twice as rapidly from the core as the former. These data imply that the primary field-induced state in underdoped superconducting cuprates is a PDW, with approximately eight CuO2 unit-cell periodicity and coexisting with its secondary CDWs.

12.
Phys Rev Lett ; 122(17): 176403, 2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31107058

RESUMEN

Cuprate superconductors host a multitude of low-energy optical phonons. Using time- and angle-resolved photoemission spectroscopy, we study coherent phonons in Bi_{2}Sr_{2}Ca_{0.92}Y_{0.08}Cu_{2}O_{8+δ}. Sub-meV modulations of the electronic band structure are observed at frequencies of 3.94±0.01 and 5.59±0.06 THz. For the dominant mode at 3.94 THz, the amplitude of the band energy oscillation weakly increases as a function of momentum away from the node. Theoretical calculations allow identifying the observed modes as CuO_{2}-derived A_{1g} phonons. The Bi- and Sr-derived A_{1g} modes which dominate Raman spectra in the relevant frequency range are absent in our measurements. This highlights the mode selectivity for phonons coupled to the near-Fermi-level electrons, which originate from CuO_{2} planes and dictate thermodynamic properties.

13.
J Phys Condens Matter ; 31(21): 214003, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-30888969

RESUMEN

Anisotropy of transport and magnetic properties of parent compounds of iron based superconductors is a key ingredient of superconductivity. In this work, we investigate in-plane and out-of-plane properties, namely thermal, electric, thermoelectric transport and magnetic susceptibility in a high quality BaFe2As2 single crystal of the 122 parent compound, using a combined experimental and theoretical approach. Combining the ab initio calculation of the band structure and the measured in-plane and out-of-plane resistivity, we evaluate the scattering rates which turn out to be strongly anisotropic and determined by spin excitations in the antiferromagnetic state. The observed anisotropy of thermal conductivity is discussed in terms of anisotropy of sound velocities which we estimate to be [Formula: see text]. Remarkably, we find that thermal conductivity is characterized by a sizeable electronic contribution at low temperature, which is ascribed to the high purity of our crystal.

14.
Phys Rev Lett ; 122(6): 067002, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30822056

RESUMEN

Optimally doped cuprate are characterized by the presence of superconducting fluctuations in a relatively large temperature region above the critical transition temperature. We reveal here that the effect of thermal disorder, which decreases the condensate phase coherence at equilibrium, can be dynamically contrasted by photoexcitation with ultrashort midinfrared pulses. In particular, our findings reveal that light pulses with photon energy comparable to the amplitude of the superconducting gap and polarized in plane along the copper-copper direction can dynamically enhance the optical response associated with the onset of superconductivity. We propose that this effect can be rationalized by an effective d-wave BCS model, which reveals that midinfrared pulses result in a transient increase of the phase coherence.

15.
Science ; 362(6410): 62-65, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30287656

RESUMEN

Electron-boson coupling plays a key role in superconductivity for many systems. However, in copper-based high-critical temperature (T c) superconductors, its relation to superconductivity remains controversial despite strong spectroscopic fingerprints. In this study, we used angle-resolved photoemission spectroscopy to find a pronounced correlation between the superconducting gap and the bosonic coupling strength near the Brillouin zone boundary in Bi2Sr2CaCu2O8+δ The bosonic coupling strength rapidly increases from the overdoped Fermi liquid regime to the optimally doped strange metal, concomitant with the quadrupled superconducting gap and the doubled gap-to-T c ratio across the pseudogap boundary. This synchronized lattice and electronic response suggests that the effects of electronic interaction and the electron-phonon coupling (EPC) reinforce each other in a positive-feedback loop upon entering the strange-metal regime, which in turn drives a stronger superconductivity.

16.
Phys Rev Lett ; 121(7): 077004, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169083

RESUMEN

We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k_{z} dispersion is observed along the nodal direction, whereas a significant antinodal k_{z} dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La_{2-x}Sr_{x}CuO_{4} cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.

17.
Sci Rep ; 8(1): 2169, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391431

RESUMEN

High-temperature superconductivity in iron-pnictides/chalcogenides arises in balance with several electronic and lattice instabilities. Beside the antiferromagnetic order, the orbital anisotropy between Fe 3d xz and 3d yz occurs near the orthorhombic structural transition in several parent compounds. However, the extent of the survival of orbital anisotropy against the ion-substitution remains to be established. Here we report the composition (x) and temperature (T) dependences of the orbital anisotropy in the electronic structure of a BaFe2(As1-xP x )2 system by using angle-resolved photoemission spectroscopy. In the low-x regime, the orbital anisotropy starts to evolve on cooling from high temperatures above both antiferromagnetic and orthorhombic transitions. By increasing x, it is gradually suppressed and survives in the optimally doped regime. We find that the in-plane orbital anisotropy persists in a large area of the nonmagnetic phase, including the superconducting dome. These results suggest that the rotational symmetry-broken electronic state acts as the stage for superconductivity in BaFe2(As1-xP x )2.

18.
Phys Rev Lett ; 118(13): 137001, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409951

RESUMEN

We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr_{1-x}LaCe_{x}CuO_{4-δ} (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x. The electron number (n) is estimated from the experimentally obtained Fermi surface volume for x=0.10, 0.15 and 0.18 samples. It clearly shows a significant and annealing dependent deviation from the nominal x. In addition, we observe that the pseudo-gap at hot spots is also closely correlated with n; the pseudogap gradually closes as n increases. We established a new phase diagram of PLCCO as a function of n. Different from the x-based one, the new phase diagram shows similar antiferromagnetic and superconducting phases to those of hole doped ones. Our results raise a possibility for absence of disparity between the phase diagrams of electron- and hole-doped cuprates.

19.
Nat Commun ; 7: 13761, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27996009

RESUMEN

In complex materials various interactions have important roles in determining electronic properties. Angle-resolved photoelectron spectroscopy (ARPES) is used to study these processes by resolving the complex single-particle self-energy and quantifying how quantum interactions modify bare electronic states. However, ambiguities in the measurement of the real part of the self-energy and an intrinsic inability to disentangle various contributions to the imaginary part of the self-energy can leave the implications of such measurements open to debate. Here we employ a combined theoretical and experimental treatment of femtosecond time-resolved ARPES (tr-ARPES) show how population dynamics measured using tr-ARPES can be used to separate electron-boson interactions from electron-electron interactions. We demonstrate a quantitative analysis of a well-defined electron-boson interaction in the unoccupied spectrum of the cuprate Bi2Sr2CaCu2O8+x characterized by an excited population decay time that maps directly to a discrete component of the equilibrium self-energy not readily isolated by static ARPES experiments.

20.
Nat Commun ; 7: 13146, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27759004

RESUMEN

Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon-phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon-phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...