Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 13(2): e1006561, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28166228

RESUMEN

DnaA is a conserved key regulator of replication initiation in bacteria, and is homologous to ORC proteins in archaea and in eukaryotic cells. The ATPase binds to several high affinity binding sites at the origin region and upon an unknown molecular trigger, spreads to several adjacent sites, inducing the formation of a helical super structure leading to initiation of replication. Using FRAP analysis of a functional YFP-DnaA allele in Bacillus subtilis, we show that DnaA is bound to oriC with a half-time of 2.5 seconds. DnaA shows similarly high turnover at the replication machinery, where DnaA is bound to DNA polymerase via YabA. The absence of YabA increases the half time binding of DnaA at oriC, showing that YabA plays a dual role in the regulation of DnaA, as a tether at the replication forks, and as a chaser at origin regions. Likewise, a deletion of soj (encoding a ParA protein) leads to an increase in residence time and to overinitiation, while a mutation in DnaA that leads to lowered initiation frequency, due to a reduced ATPase activity, shows a decreased residence time on binding sites. Finally, our single molecule tracking experiments show that DnaA rapidly moves between chromosomal binding sites, and does not arrest for more than few hundreds of milliseconds. In Escherichia coli, DnaA also shows low residence times in the range of 200 ms and oscillates between spatially opposite chromosome regions in a time frame of one to two seconds, independently of ongoing transcription. Thus, DnaA shows extremely rapid binding turnover on the chromosome including oriC regions in two bacterial species, which is influenced by Soj and YabA proteins in B. subtilis, and is crucial for balanced initiation control, likely preventing fatal premature multimerization and strand opening of DnaA at oriC.


Asunto(s)
Proteínas Bacterianas/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Complejo de Reconocimiento del Origen/genética , Adenosina Trifosfatasas/genética , Bacillus subtilis/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Origen de Réplica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...