Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
PLOS Glob Public Health ; 4(9): e0002690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39255298

RESUMEN

Child exposure to animal feces and associated enteropathogens contribute to a significant burden of disease in low- and middle-income countries. However, there are no standardized, validated survey-based approaches to enable accurate assessment of child exposure to zoonotic enteropathogens. We developed and validated a survey-based measure of exposure, the fecal-oral child exposure to zoonotic enteropathogens Index (the FECEZ Enteropathogens Index). First, we identified critical attributes of child exposure through in-depth interviews (IDIs) in Ecuador among individuals who care for animals (n = 29) and mothers of children under two years old (n = 58), and through a systematic review of existing exposure measures. Second, based on these findings, we developed a 105-question survey and administered it to 297 mothers with children under age five. Third, we refined the survey, using principal component analysis to determine the optimal number of components. The final index consisted of 34 items across two sub-domains: the child Environment and child Behavior. Lastly, we compared index scores to two commonly used, unvalidated measures of child exposure-maternal reported household animal ownership and presence of animal feces. Using the FECEZ Enteropathogens Index revealed varying degrees of exposure in our study population, with only two children having no exposure. In contrast, if we had used animal ownership or the presence of animal feces as a measure of exposure, 44% and 33% of children would have been classified as having no exposure, respectively. These common binary exposure measures may be inadequate because they do not provide sufficient information to identify the relative risk of zoonotic pathogen exposure. The FECEZ Enteropathogens Index overcomes this limitation, advancing our ability to assess exposure by quantifying the multiple components of child exposure to zoonotic enteropathogens with higher resolution. Additional testing and evaluation of the index is needed to ensure its reliability, validity, and cross-cultural equivalence in other contexts.

2.
PLOS Glob Public Health ; 4(9): e0003604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39292655

RESUMEN

Exposure to animal feces and associated enteric pathogens poses significant risks to child health. However, public health strategies to mitigate enteric infections among children largely aim to reduce exposure to human feces, overlooking transmission pathways related to animal feces. In this study we examine if and how children are exposed to enteric pathogens in animal feces in northwestern coastal Ecuador. We conducted qualitative interviews with mothers of children aged 10-18 months that owned (n = 32) and did not own (n = 26) animals in urban and rural communities. Using thematic analysis, we identified community, household, and child behavioral factors that influence exposure. We also compared child exposure by household animal ownership. Our findings revealed myriad opportunities for young children to be exposed to enteric pathogens in many locations and from multiple animal sources, regardless of household animal ownership. Animal feces management practices (AFM) used by mothers, such as rinsing feces into ditches and throwing feces into surrounding areas, may increase environmental contamination outside their homes and in their communities. Unsafe AFM practices were similar to unsafe child feces management practices reported in other studies, including practices related to defecation location, feces removal and disposal, environmental contamination cleaning, and handwashing. Findings suggest that animal feces may contaminate the environment along similar pathways as human feces. Identification and incorporation of safe AFM practices, similar to those developed for child feces management, would 1) mitigate child exposure to enteric pathogens by reducing animal feces contamination in domestic and public spaces; and 2) enable an integrated approach to address enteric pathogen exposure pathways related to animal and child feces.

3.
Risk Anal ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179379

RESUMEN

Water supply and sanitation are essential household services frequently shared in resource-poor settings. Shared sanitation can increase the risk of enteric pathogen transmission due to suboptimal cleanliness of facilities used by large numbers of individuals. It also can potentially increase the risk of respiratory disease transmission. As sanitation is an essential need, shared sanitation facilities may act as important respiratory pathogen transmission venues even with strict control measures such as stay-at-home recommendations in place. This analysis explores how behavioral and infrastructural conditions surrounding shared sanitation may individually and interactively influence respiratory pathogen transmission. We developed an individual-based community transmission model using COVID-19 as a motivating example parameterized from empirical literature to explore how transmission in shared latrines interacts with transmission at the community level. We explored mitigation strategies, including infrastructural and behavioral interventions. Our review of empirical literature confirms that shared sanitation venues in resource-poor settings are relatively small with poor ventilation and high use patterns. In these contexts, shared sanitation facilities may act as strong drivers of respiratory disease transmission, especially in areas reliant on shared facilities. Decreasing dependence on shared latrines was most effective at attenuating sanitation-associated transmission. Improvements to latrine ventilation and handwashing behavior were also able to decrease transmission. The type and order of interventions are important in successfully attenuating disease risk, with infrastructural and engineering controls being most effective when administered first, followed by behavioral controls after successful attenuation of sufficient alternate transmission routes. Beyond COVID-19, our modeling framework can be extended to address water, sanitation, and hygiene measures targeted at a range of environmentally mediated infectious diseases.

4.
Pathogens ; 13(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39204210

RESUMEN

Humans can be infected with anthroponotic (Ancylostoma duodenale and Necator americanus) and with zoonotic (Ancylostoma ceylanicum, A. caninum, A. braziliense, and Uncinaria stenocephala) hookworms from dogs. Anthroponotic species are usually thought not to infect dogs. We used the internal transcribed spacer-1 (ITS1) gene in a quantitative PCR to detect anthroponotic and zoonotic hookworm species in fecal samples from 54 children and 79 dogs living in an indigenous community in tropical Northwestern Ecuador. Hookworm DNA was detected in 59.3% of children and 92.4% of dogs. Among samples from children, zoonotic hookworms were detected in 24.1% (A. ceylanicum 14.8%, A. caninum 11.1%, and A. braziliense 1.9%), whilst in dog samples, anthroponotic species were detected in 19.0% (N. americanus 12.4% and A. duodenale 6.3%). Sanger sequencing was performed successfully on 60 qPCR-positive samples (16 from children and 44 from dogs), and consensus sequences were obtained with >98% homology to GenBank references for hookworm spp. Phylogenetic analysis showed a close relationship between anthroponotic and zoonotic Ancylostoma species and no heterogeneity between A. duodenale and A. caninum; in human samples, we found A. ceylanicum but not A. braziliense sequences and we were unable to identify N. americanus in the dog samples. No infections with U. stenocephala were detected. Our data provide evidence for high rates of hookworm infections in indigenous children and dogs in a marginalized rural setting in coastal Ecuador. We also found evidence for potential cross-transmission of hookworm spp. between humans and dogs that represent a potential domestic reservoir for zoonotic and anthroponotic hookworms.

5.
J Infect Dis ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082780

RESUMEN

The Zika virus (ZIKV) epidemic in Latin America (2015-2016) has primarily been studied in urban centers, with less understanding of its impact on smaller rural communities. To address this gap, we analyzed ZIKV sero-epidemiology in six rural Ecuadorian communities (2018-2019) with varying access to a commercial hub. Seroprevalence ranged from 19% to 54% measured by NS1 blockade of binding ELISA. We observed a decline in ZIKV seroprevalence between 2018 and 2019 that was greater among younger populations, suggesting that the attack rates in the 2015-16 epidemic were significantly higher than our 2018 observations. These data indicate that the 2015-16 epidemic included significant transmission in rural and more remote settings. Our observations of high seroprevalence in our area of study highlights the importance of surveillance and research in rural areas lacking robust health systems to manage future Zika outbreaks and vaccine initiatives.

6.
Risk Anal ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772724

RESUMEN

The coronavirus disease 2019 pandemic highlighted the need for more rapid and routine application of modeling approaches such as quantitative microbial risk assessment (QMRA) for protecting public health. QMRA is a transdisciplinary science dedicated to understanding, predicting, and mitigating infectious disease risks. To better equip QMRA researchers to inform policy and public health management, an Advances in Research for QMRA workshop was held to synthesize a path forward for QMRA research. We summarize insights from 41 QMRA researchers and experts to clarify the role of QMRA in risk analysis by (1) identifying key research needs, (2) highlighting emerging applications of QMRA; and (3) describing data needs and key scientific efforts to improve the science of QMRA. Key identified research priorities included using molecular tools in QMRA, advancing dose-response methodology, addressing needed exposure assessments, harmonizing environmental monitoring for QMRA, unifying a divide between disease transmission and QMRA models, calibrating and/or validating QMRA models, modeling co-exposures and mixtures, and standardizing practices for incorporating variability and uncertainty throughout the source-to-outcome continuum. Cross-cutting needs identified were to: develop a community of research and practice, integrate QMRA with other scientific approaches, increase QMRA translation and impacts, build communication strategies, and encourage sustainable funding mechanisms. Ultimately, a vision for advancing the science of QMRA is outlined for informing national to global health assessments, controls, and policies.

7.
Sci Total Environ ; 919: 170615, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316303

RESUMEN

Urban wastewater reuse for agriculture provides reliable nutrient-rich water, reduces water stress, and strengthens food systems. However, wastewater reuse also presents health risks and characterizing the spatial dynamics of wastewater can help optimize risk mitigation. We conducted comparative risk analysis of exposure to wastewater in irrigation canals, where we compared those exposed to a) treated vs. untreated wastewater, and b) wastewater upstream vs. downstream from communities in the Mezquital Valley. The canal system with treated wastewater was sampled prior to being treated, directly after treatment, as well as before and after it flowed through a community. Along the canal system that carried untreated wastewater, we sampled before and after a community. We quantified the concentrations of bacterial, protozoal, and viral pathogens in the wastewater. Pathogen concentration data were used to calculate measures of relative risk between sampling points. Wastewater treatment reduced predicted bacterial pathogen infection risk in post-treatment locations (RR = 0.73, 95 % CI 0.61, 0.87), with no evidence of similar reductions in Giardia or viral pathogens (RR = 1.02, 95 % CI 0.56, 1.86 and RR = 1.18, 95 % CI 0.70, 2.02 respectively). Although infection risk decreased further down the canals, infection risk increased for bacterial pathogens after our sentinel community (RR = 1.94, 95 % 1.34, 2.86). For Giardia and viral pathogens infection risk was elevated but not significantly. We found similar evidence for increases in risk when comparing the treated section of the canal system with a canal section whose wastewater was not treated, i.e., the risk benefits of wastewater treatment were lost after our sentinel community for bacteria (RR = 5.27 vs. 2.08 for sampling points before and after our sentinel community respectively) and for Giardia (RR = 6.98 vs. 3.35 respectively). The increase in risk after transit through communities could have resulted from local community recontamination of the treated wastewater stream.


Asunto(s)
Giardiasis , Aguas Residuales , Humanos , México , Ambiente , Agricultura , Bacterias , Giardia
8.
PLoS Negl Trop Dis ; 18(1): e0011408, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295108

RESUMEN

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Here, we study dengue virus (DENV) transmission across the ecologically and demographically distinct regions or Ecuador. We analyzed province-level age-stratified dengue incidence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have age-specific distributions of hospital-seeking cases consistent with recent emergence across all provinces. To evaluate factors associated with geographic differences in DENV transmission potential, we modeled DENV vector risk using 11,693 Aedes aegypti presence points to the resolution of 1 hectare. In total, 56% of the population of Ecuador, including in provinces identified as having increasing DENV transmission in our models, live in areas with high risk of Aedes aegypti, with population size, trash collection, elevation, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Ecuador/epidemiología , Mosquitos Vectores , Factores de Riesgo
9.
Glob Public Health ; 19(1): 2291697, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084739

RESUMEN

Maternal depression remains under characterised in many low- and middle-income countries, especially in rural settings. We aimed to describe maternal depression and anxiety symptoms in rural and urban communities in northern Ecuador and to identify socioeconomic and demographic factors associated with these symptoms. Data from 508 mothers participating in a longitudinal cohort study were included. Depression and anxiety symptoms were assessed using the Hopkins Symptom Checklist (HSCL-25), and maternal psychological functioning was assessed using a checklist of daily activities. Tobit regression models were used to examine associations with sociodemographic variables and urbanicity. The median HSCL-25 score was 1.2 (IQR: 0.4) and 14% of women scored above the threshold for clinically relevant symptoms. Rural women reported similar food insecurity, less education, younger age of first pregnancy, and lower socio-economic status compared to their urban counterparts. After adjusting for these factors, rural women reported lower HSCL-25 scores compared to women lin urban areas (ß = -0.48, 95%CI:0.65, -0.31). Rural residence was also associated with lower depression and anxiety HSCL-25 sub-scale scores, and similar levels of maternal functioning, compared to urban residence. Our results suggest that both household and community-level factors are risk factors for maternal depression and anxiety in this context.


Asunto(s)
Depresión , Población Rural , Embarazo , Femenino , Humanos , Depresión/epidemiología , Estudios Longitudinales , Ecuador/epidemiología , Ansiedad/epidemiología , Ansiedad/diagnóstico , Ansiedad/etiología
10.
Med Microecol ; 182023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38148908

RESUMEN

The increasing abundance of extended spectrum (ß-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate blaCTX-M gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The blaCTX-M associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of blaCTX-M transfer between chickens and humans in the community.

11.
Environ Sci Technol ; 57(36): 13313-13324, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37642551

RESUMEN

Despite growing urbanization, our understanding of the impacts of water and sanitation on human health has largely come from studies in rural sectors. To this end, we collected data at both regional (water quality measures from water treatment systems) and community (cross-sectional surveys) scales to examine determinants of enteric pathogen infection and diarrheal disease among infants in Addis Ababa, Ethiopia. Regionally, the Legedadi water treatment plant had significantly lower heterotrophic plate counts, total coliform counts, and fecal coliform counts compared with the Gefersa water treatment plant. The number of pathogen types in infant stool also differed by plant. Decreases in chlorine levels and increases in the relative abundance of Gammaproteobacteria with distance from treatment plants suggest a compromised water distribution system. In communities, infants in households that obtained water from yard pipes or public taps had significantly lower odds of diarrhea compared to households that had water piped into their dwellings (OR = 0.35, 95% CI 0.16, 0.76, and OR = 0.39, 95% CI 0.15, 1.00, respectively). Similarly, infants in households that boiled or filtered water had significantly lower odds of diarrhea compared to households that did not treat water (OR = 0.40, 95% CI 0.19, 0.86 and OR = 0.23, 95% CI 0.06, 0.84, respectively). Integrating multiscalar data better informs the health impacts of water in urban settings.


Asunto(s)
Cloruros , Cloro , Lactante , Humanos , Etiopía/epidemiología , Estudios Transversales , Diarrea/epidemiología
12.
PLoS Negl Trop Dis ; 17(8): e0010831, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552669

RESUMEN

BACKGROUND: Transmission models have a long history in the study of mosquito-borne disease dynamics. The mosquito biting rate (MBR) is an important parameter in these models, however, estimating its value empirically is complex. Modeling studies obtain biting rate values from various types of studies, each of them having its strengths and limitations. Thus, understanding these study designs and the factors that contribute to MBR estimates and their variability is an important step towards standardizing these estimates. We do this for an important arbovirus vector Aedes aegypti. METHODOLOGY/PRINCIPAL FINDINGS: We perform a systematic review using search terms such as 'biting rate' and 'biting frequency' combined with 'Aedes aegypti' ('Ae. aegypti' or 'A. aegypti'). We screened 3,201 articles from PubMed and ProQuest databases, of which 21 met our inclusion criteria. Two broader types of studies are identified: human landing catch (HLC) studies and multiple feeding studies. We analyze the biting rate data provided as well as the methodologies used in these studies to characterize the variability of these estimates across temporal, spatial, and environmental factors and to identify the strengths and limitations of existing methodologies. Based on these analyses, we present two approaches to estimate population mean per mosquito biting rate: one that combines studies estimating the number of bites taken per gonotrophic cycle and the gonotrophic cycle duration, and a second that uses data from histological studies. Based on one histological study dataset, we estimate biting rates of Ae. aegypti (0.41 and 0.35 bite/mosquito-day in Thailand and Puerto Rico, respectively). CONCLUSIONS/SIGNIFICANCE: Our review reinforces the importance of engaging with vector biology when using mosquito biting rate data in transmission modeling studies. For Ae. aegypti, this includes understanding the variation of the gonotrophic cycle duration and the number of bites per gonotrophic cycle, as well as recognizing the potential for spatial and temporal variability. To address these variabilities, we advocate for site-specific data and the development of a standardized approach to estimate the biting rate.


Asunto(s)
Aedes , Mordeduras y Picaduras de Insectos , Animales , Humanos , Mosquitos Vectores , Mordeduras y Picaduras de Insectos/epidemiología , Tailandia/epidemiología , Conducta Alimentaria
13.
medRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37398346

RESUMEN

The distribution and intensity of viral diseases transmitted by Aedes aegypti mosquitoes, including dengue, have rapidly increased over the last century. Ecuador is an interesting country to study drivers of dengue virus (DENV) transmission given it has multiple ecologically and demographically distinct regions. Here, we analyze province-level age-stratified dengue prevalence data from 2000-2019 using catalytic models to estimate the force of infection of DENV over eight decades and across provinces in Ecuador. We found that provinces established endemic DENV transmission at different time periods. Coastal provinces with the largest and most connected cities had the earliest and highest increase in DENV transmission, starting around 1980 and continuing to the present. In contrast, remote and rural areas with reduced access, like the northern coast and the Amazon regions, experienced a rise in DENV transmission and endemicity only in the last 10 to 20 years. The newly introduced chikungunya and Zika viruses have distinct age-specific prevalence distributions consistent with recent emergence across all provinces. We evaluated factors to the resolution of 1 hectare associated with geographic differences in vector suitability and arbovirus disease in the last 10 years by modeling 11,693 A aegypti presence points and 73,550 arbovirus cases. In total, 56% of the population of Ecuador lives in areas with high risk of Aedes aegypti. Most suitable provinces had hotspots for arbovirus disease risk, with population size, elevation, sewage connection, trash collection, and access to water as important determinants. Our investigation serves as a case study of the changes driving the expansion of DENV and other arboviruses globally and suggest that control efforts should be expanded to semi-urban and rural areas and to historically isolated regions to counteract increasing dengue outbreaks.

14.
PLoS Negl Trop Dis ; 17(6): e0011333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289678

RESUMEN

Dengue has historically been considered an urban disease associated with dense human populations and the built environment. Recently, studies suggest increasing dengue virus (DENV) transmission in rural populations. It is unclear whether these reports reflect recent spread into rural areas or ongoing transmission that was previously unnoticed, and what mechanisms are driving this rural transmission. We conducted a systematic review to synthesize research on dengue in rural areas and apply this knowledge to summarize aspects of rurality used in current epidemiological studies of DENV transmission given changing and mixed environments. We described how authors defined rurality and how they defined mechanisms for rural dengue transmission. We systematically searched PubMed, Web of Science, and Embase for articles evaluating dengue prevalence or cumulative incidence in rural areas. A total of 106 articles published between 1958 and 2021 met our inclusion criteria. Overall, 56% (n = 22) of the 48 estimates that compared urban and rural settings reported rural dengue incidence as being as high or higher than in urban locations. In some rural areas, the force of infection appears to be increasing over time, as measured by increasing seroprevalence in children and thus likely decreasing age of first infection, suggesting that rural dengue transmission may be a relatively recent phenomenon. Authors characterized rural locations by many different factors, including population density and size, environmental and land use characteristics, and by comparing their context to urban areas. Hypothesized mechanisms for rural dengue transmission included travel, population size, urban infrastructure, vector and environmental factors, among other mechanisms. Strengthening our understanding of the relationship between rurality and dengue will require a more nuanced definition of rurality from the perspective of DENV transmission. Future studies should focus on characterizing details of study locations based on their environmental features, exposure histories, and movement dynamics to identify characteristics that may influence dengue transmission.


Asunto(s)
Virus del Dengue , Dengue , Niño , Humanos , Estudios Seroepidemiológicos , Estudios Longitudinales , Población Rural
15.
Curr Dev Nutr ; 7(5): 100093, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37234101

RESUMEN

Background: Constraints on food choice increase risk of malnutrition worldwide. Residents of secondary cities within low- and middle-income countries are a population of particular concern because they often face high rates of food insecurity and multiple nutritional burdens. Within this context, effective and equitable interventions to support healthy diets must be based on an understanding of the lived experience of individuals and their interactions with the food environment. Objectives: The primary objectives of this study were to describe considerations that drive household decision making around food choice in the city of Esmeraldas, Ecuador; to identify trade-offs between these considerations; and to understand how an evolving urban environment influences these trade-offs. Methods: Semistructured interviews were conducted with 20 mothers of young children to explore drivers in food choice throughout the purchase, preparation, and consumption chain. Interviews were transcribed and coded to identify key themes. Results: Personal preference, economic access (costs), convenience, and perceptions of food safety were key influencers of decision making related to food. In addition, concerns about personal safety in the urban environment limited physical access to food. This, combined with the need to travel long distances to obtain desirable foods, increased men's participation in food purchasing. Women's increasing engagement in the workforce also increased men's participation in food preparation. Conclusions: Policies to promote healthy food behavior in this context should focus on increasing access to health foods, such as affordable fresh produce, in convenient and physically safe locations. CurrDev Nutr 2023;x:xx.

16.
Epidemiology ; 34(4): 589-600, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255265

RESUMEN

BACKGROUND: Guidance on COVID-19 quarantine duration is often based on the maximum observed incubation periods assuming perfect compliance. However, the impact of longer quarantines may be subject to diminishing returns; the largest benefits of quarantine occur over the first few days. Additionally, the financial and psychological burdens of quarantine may motivate increases in noncompliance behavior. METHODS: We use a deterministic transmission model to identify the optimal length of quarantine to minimize transmission. We modeled the relation between noncompliance behavior and disease risk using a time-varying function of leaving quarantine based on studies from the literature. RESULTS: The first few days in quarantine were more crucial to control the spread of COVID-19; even when compliance is high, a 10-day quarantine was as effective in lowering transmission as a 14-day quarantine; under certain noncompliance scenarios a 5-day quarantine may become nearly protective as 14-day quarantine. CONCLUSION: Data to characterize compliance dynamics will help select optimal quarantine strategies that balance the trade-offs between social forces governing behavior and transmission dynamics.


Asunto(s)
COVID-19 , Cuarentena , Humanos , COVID-19/prevención & control , Dinámica de Grupo , Cuarentena/psicología , SARS-CoV-2 , Adhesión a Directriz , Política Pública
17.
PLoS Negl Trop Dis ; 17(4): e0010839, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37104296

RESUMEN

For vector-borne diseases the basic reproduction number [Formula: see text], a measure of a disease's epidemic potential, is highly temperature-dependent. Recent work characterizing these temperature dependencies has highlighted how climate change may impact geographic disease spread. We extend this prior work by examining how newly emerging diseases, like Zika, will be impacted by specific future climate change scenarios in four diverse regions of Brazil, a country that has been profoundly impacted by Zika. We estimated a [Formula: see text], derived from a compartmental transmission model, characterizing Zika (and, for comparison, dengue) transmission potential as a function of temperature-dependent biological parameters specific to Aedes aegypti. We obtained historical temperature data for the five-year period 2015-2019 and projections for 2045-2049 by fitting cubic spline interpolations to data from simulated atmospheric data provided by the CMIP-6 project (specifically, generated by the GFDL-ESM4 model), which provides projections under four Shared Socioeconomic Pathways (SSP). These four SSP scenarios correspond to varying levels of climate change severity. We applied this approach to four Brazilian cities (Manaus, Recife, Rio de Janeiro, and São Paulo) that represent diverse climatic regions. Our model predicts that the [Formula: see text] for Zika peaks at 2.7 around 30°C, while for dengue it peaks at 6.8 around 31°C. We find that the epidemic potential of Zika will increase beyond current levels in Brazil in all of the climate scenarios. For Manaus, we predict that the annual [Formula: see text] range will increase from 2.1-2.5, to 2.3-2.7, for Recife we project an increase from 0.4-1.9 to 0.6-2.3, for Rio de Janeiro from 0-1.9 to 0-2.3, and for São Paulo from 0-0.3 to 0-0.7. As Zika immunity wanes and temperatures increase, there will be increasing epidemic potential and longer transmission seasons, especially in regions where transmission is currently marginal. Surveillance systems should be implemented and sustained for early detection.


Asunto(s)
Aedes , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Brasil/epidemiología , Temperatura , Ciudades/epidemiología , Número Básico de Reproducción , Infección por el Virus Zika/epidemiología , Dengue/epidemiología
18.
Emerg Infect Dis ; 29(5): 888-897, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37080979

RESUMEN

Although dengue is typically considered an urban disease, rural communities are also at high risk. To clarify dynamics of dengue virus (DENV) transmission in settings with characteristics generally considered rural (e.g., lower population density, remoteness), we conducted a phylogenetic analysis in 6 communities in northwestern Ecuador. DENV RNA was detected by PCR in 121/488 serum samples collected from febrile case-patients during 2019-2021. Phylogenetic analysis of 27 samples from Ecuador and other countries in South America confirmed that DENV-1 circulated during May 2019-March 2020 and DENV-2 circulated during December 2020-July 2021. Combining locality and isolation dates, we found strong evidence that DENV entered Ecuador through the northern province of Esmeraldas. Phylogenetic patterns suggest that, within this province, communities with larger populations and commercial centers were more often the source of DENV but that smaller, remote communities also play a role in regional transmission dynamics.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Filogenia , Ecuador/epidemiología , América del Sur
19.
Am J Trop Med Hyg ; 108(5): 981-986, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37037437

RESUMEN

Mosquito-borne diseases are a global burden; however, current methods of evaluating human-mosquito contact rates are expensive and time consuming. Validated surveys of self-reported mosquito bites may be an inexpensive way to determine mosquito presence and bite exposure level in an area, but this remains untested. In this study, a survey of self-reported mosquito bites was validated against household mosquito abundance from six communities in Esmeraldas, Ecuador. From February 2021 to July 2022, households were interviewed monthly, and five questions were used to ask participants how often they were bitten by mosquitoes at different times during the day. At the same time, adult mosquitoes were collected using a Prokopack aspirator. Species were identified and counted. Survey responses were compared with the total number of mosquitoes found in the home using negative binomial regression. More frequent self-reported mosquito bites were significantly associated with higher numbers of collected adult mosquitoes. These associations were driven by the prevalence of the dominant genera, Culex. These results suggest that surveys of perceived mosquito bites relate to actual mosquito presence, making them a potentially useful tool for determining the impact of vector-control interventions on community perceptions of risk but less useful for assessing the risk of nondominant species such as Aedes aegypti. Further work is needed to examine the robustness of these results in other contexts.


Asunto(s)
Aedes , Mordeduras y Picaduras de Insectos , Adulto , Animales , Humanos , Autoinforme , Mosquitos Vectores/fisiología , Mordeduras y Picaduras de Insectos/epidemiología , Ecuador/epidemiología , Composición Familiar , Aedes/fisiología
20.
ACS ES T Water ; 3(2): 457-464, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36818380

RESUMEN

High levels of viruses can be found in human excrement from infected individuals, a fraction of which can be emitted from toilet flushing. Unlike the common mix flush toilet (MFT), the urine-diverting toilet (UDT) separates urine from the toilet water. Specific focus on urine-associated viruses is needed because the UDT can emit different levels of urine-associated and fecal-borne viruses and urine has different properties compared to feces that can affect emission levels (e.g., protein content). In this work, we quantified emission levels of surrogate bacteriophages for urine-associated and fecal-borne viruses, MS2 and T3, from flushing a UDT and an MFT, with and without protein in the water. Emission levels of viruses in the water of the UDT were lower than that of the MFT by up to 1.2-log10 and 1.3-log10 for T3 and MS2, respectively. If urine is completely diverted in the UDT, virus emissions can be reduced by up to 4-log10. Based on these results and typical levels in urine and feces, we estimate that up to 107 and 108 gene copies of human viruses per flush can be released from the UDT and MFT, respectively. Lower emissions observed with the UDT suggest reduced exposure to viruses from flushing the UDT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA