Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurogastroenterol Motil ; 35(11): e14669, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702100

RESUMEN

BACKGROUND: Gastroparesis is defined by delayed gastric emptying (GE) without obstruction. Studies suggest targeting heme oxygenase-1 (HO1) may ameliorate diabetic gastroparesis. Upregulation of HO1 expression via interleukin-10 (IL-10) in the gastric muscularis propria is associated with reversal of delayed GE in diabetic NOD mice. IL-10 activates the M2 cytoprotective phenotype of macrophages and induces expression of HO1 protein. Here, we assess delivery of HO1 by recombinant adeno-associated viruses (AAVs) in diabetic mice with delayed GE. METHODS: C57BL6 diabetic delayed GE mice were injected with 1 × 1012 vg scAAV9-cre, scAAV9-GFP, or scAAV9-HO1 particles. Changes to GE were assessed weekly utilizing our [13 C]-octanoic acid breath test. Stomach tissue was collected to assess the effect of scAAV9 treatment on Kit, NOS1, and HO1 expression. KEY RESULTS: Delayed GE returned to normal within 2 weeks of treatment in 7/12 mice receiving scAAV9-cre and in 4/5 mice that received the scAAV9-GFP, whereas mice that received scAAV9-HO1 did not respond in the same manner and had GE that took significantly longer to return to normal (6/7 mice at 4-6 weeks). Kit, NOS1, and HO1 protein expression in scAAV9-GFP-treated mice with normal GE were not significantly different compared with diabetic mice with delayed GE. CONCLUSIONS AND INFERENCES: Injection of scAAV9 into diabetic C57BL6 mice produced a biological response that resulted in acceleration of GE independently of the cargo delivered by the AAV9 vector. Further research is needed to determine whether use of AAV mediated gene transduction in the gastric muscularis propria is beneficial and warranted.


Asunto(s)
Diabetes Mellitus Experimental , Gastroparesia , Ratones , Animales , Dependovirus/genética , Interleucina-10 , Ratones Endogámicos NOD , Ratones Endogámicos C57BL
2.
Neurogastroenterol Motil ; 33(9): e14149, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837991

RESUMEN

BACKGROUND: Normal gastrointestinal motility depends on electrical slow-wave activity generated by interstitial cells of Cajal (ICC) in the tunica muscularis of the gastrointestinal tract. A requirement for HCO3- in extracellular solutions used to record slow waves indicates a role for HCO3- transport in ICC pacemaking. The Slc4a4 gene transcript encoding the electrogenic Na+ /HCO3- cotransporter, NBCe1, is enriched in mouse small intestinal myenteric region ICC (ICC-MY) that generate slow waves. This study aimed to determine how extracellular HCO3- concentrations affect electrical activity in mouse small intestine and to determine the contribution of NBCe1 activity to these effects. METHODS: Immunohistochemistry and sharp electrode electrical recordings were used. KEY RESULTS: The NBCe1 immunoreactivity was localized to ICC-MY of the tunica muscularis. In sharp electrode electrical recordings, removal of HCO3- from extracellular solutions caused significant, reversible, depolarization of the smooth muscle and a reduction in slow-wave amplitude and frequency. In 100 mM HCO3- , the muscle hyperpolarized and slow wave amplitude and frequency increased. The effects of replacing extracellular Na+ with Li+ , an ion that does not support NBCe1 activity, were similar to, but larger than, the effects of removing HCO3- . There were no additional changes to electrical activity when HCO3- was removed from Li+ containing solutions. The Na+ /HCO3- cotransport inhibitor, S-0859 (30µM) significantly reduced the effect of removing HCO3- on electrical activity. CONCLUSIONS & INFERENCES: These studies demonstrate a major role for Na+ /HCO3- cotransport by NBCe1 in electrical activity of mouse small intestine and indicated that regulation of intracellular acid:base homeostasis contributes to generation of normal pacemaker activity in the gastrointestinal tract.


Asunto(s)
Bicarbonatos/metabolismo , Motilidad Gastrointestinal/fisiología , Intestino Delgado/fisiología , Simportadores de Sodio-Bicarbonato/metabolismo , Animales , Femenino , Transporte Iónico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Am J Physiol Gastrointest Liver Physiol ; 320(1): G93-G107, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112159

RESUMEN

Interstitial cells of Cajal (ICCs) generate electrical slow waves, which are required for normal gastrointestinal motility. The mechanisms for generation of normal pacemaking are not fully understood. Normal gastrointestinal contractility- and electrical slow-wave activity depend on the presence of extracellular HCO3-. Previous transcriptional analysis identified enrichment of mRNA encoding the electrogenic Na+/HCO3- cotransporter (NBCe1) gene (Slc4a4) in pacemaker myenteric ICCs in mouse small intestine. We aimed to determine the distribution of NBCe1 protein in ICCs of the mouse gastrointestinal tract and to identify the transcripts of the Slc4a4 gene in mouse and human small intestinal tunica muscularis. We determined the distribution of NBCe1 immunoreactivity (NBCe1-IR) by immunofluorescent labeling in mouse and human tissues. In mice, NBCe1-IR was restricted to Kit-positive myenteric ICCs of the stomach and small intestine and submuscular ICCs of the large intestine, that is, the slow wave generating subset of ICCs. Other subtypes of ICCs were NBCe1-negative. Quantitative real-time PCR identified >500-fold enrichment of Slc4a4-207 and Slc4a4-208 transcripts ["IP3-receptor-binding protein released by IP3" (IRBIT)-regulated isoforms] in Kit-expressing cells isolated from KitcreERT2/+, Rpl22tm1.1Psam/Sj mice and from single GFP-positive ICCs from Kittm1Rosay mice. Human jejunal tunica muscularis ICCs were also NBCe1-positive, and SLC4A4-201 and SLC4A4-204 RNAs were >300-fold enriched relative to SLC4A4-202. In summary, NBCe1 protein expressed in ICCs with electrical pacemaker function is encoded by Slc4a4 gene transcripts that generate IRBIT-regulated isoforms of NBCe1. In conclusion, Na+/HCO3- cotransport through NBCe1 contributes to the generation of pacemaker activity in subsets of ICCs.NEW & NOTEWORTHY In this study, we show that the electrogenic Na+/HCO3- cotransporter, NBCe1/Slc4a4, is expressed in subtypes of interstitial cells of Cajal (ICCs) responsible for electrical slow wave generation throughout the mouse gastrointestinal tract and is absent in other types of ICCs. The transcripts of Slc4a4 expressed in mouse ICCs and human gastrointestinal smooth muscle are the regulated isoforms. This indicates a key role for HCO3- transport in generation of gastrointestinal motility patterns.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo , Sodio/metabolismo , Simportadores/metabolismo , Adulto , Anciano , Animales , Humanos , Intestino Delgado/metabolismo , Ratones Transgénicos , Persona de Mediana Edad , Músculo Liso/fisiología , Oocitos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo
4.
FASEB J ; 33(5): 6632-6642, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30802137

RESUMEN

The Ca2+-activated Cl- channel, anoctamin 1 (Ano1, also known as transmembrane protein 16A) contributes to intestinal pacemaking, fluid secretion, cellular excitability, and tissue development. The human ANO1 promoter contains binding sites for the glioma-associated oncogene (Gli) proteins. We investigated regulation of ANO1 transcription by Gli. ANO1 promoter activity was determined using a luciferase reporter system. Binding and functional effects of Glis on ANO1 transcription and expression were demonstrated by chromatin immunoprecipitation, small interfering RNA knockdown, PCR, immunolabeling, and recordings of Ca2+-activated Cl- currents in human embryonic kidney 293 (HEK293) cells. Results from previous genome-wide association studies were used to test ANO1 promoter polymorphisms for association with disease. Gli1 and Gli2 bound to the promoter and repressed ANO1 transcription. Repression depended on Gli binding to a site close to the ANO1 transcriptional start site. Mutation of this site prevented Gli binding and transcriptional repression. Knockdown of Gli expression and inhibition of Gli activity increased expression of ANO1 RNA and Ca2+-activated Cl- currents in HEK293 cells. A single-nucleotide polymorphism prevented Gli binding and showed association with irritable bowel syndrome. We conclude that Gli1 and Gli2 repress ANO1 by a novel mechanism that is independent of Gli cleavage and that has a role in gastrointestinal function.-Mazzone, A., Gibbons, S. J., Eisenman, S. T., Strege, P. R., Zheng, T., D'Amato, M., Ordog, T., Fernandez-Zapico, M. E., Farrugia, G. Direct repression of anoctamin 1 (ANO1) gene transcription by Gli proteins.


Asunto(s)
Anoctamina-1/biosíntesis , Regulación de la Expresión Génica , Proteínas de Neoplasias/biosíntesis , Proteínas Nucleares/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Anoctamina-1/genética , Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Humanos , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Proteína con Dedos de Zinc GLI1/genética , Proteína Gli2 con Dedos de Zinc/genética
6.
BMC Med Genomics ; 11(1): 62, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30086735

RESUMEN

BACKGROUND: Cellular changes described in human gastroparesis have revealed a role for immune dysregulation, however, a mechanistic understanding of human gastroparesis and the signaling pathways involved are still unclear. METHODS: Diabetic gastroparetics, diabetic non-gastroparetic controls, idiopathic gastroparetics and non-diabetic non-gastroparetic controls underwent full-thickness gastric body biopsies. Deep RNA sequencing was performed and pathway analysis of differentially expressed transcripts was done using Ingenuity®. A subset of differentially expressed genes in diabetic gastroparesis was validated in a separate cohort using QT-PCR. RESULTS: 111 genes were differentially expressed in diabetic gastroparesis and 181 in idiopathic gastroparesis with a log2fold difference of | ≥ 2| and false detection rate (FDR) < 5%. Top canonical pathways in diabetic gastroparesis included genes involved with macrophages, fibroblasts and endothelial cells in rheumatoid arthritis, osteoarthritis pathway and differential regulation of cytokine production in macrophages and T helper cells by IL-17A and IL-17F. Top canonical pathways in idiopathic gastroparesis included genes involved in granulocyte adhesion and diapedesis, agranulocyte adhesion and diapedesis, and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Sixty-five differentially expressed genes (log2fold difference | ≥ 2|, FDR < 5%) were common in both diabetic and idiopathic gastroparesis with genes in the top 5 canonical pathways associated with immune signaling. 4/5 highly differentially expressed genes (SGK1, APOLD1, CXCR4, CXCL2, and FOS) in diabetic gastroparesis were validated in a separate cohort of patients using RT-PCR. Immune profile analysis revealed that genes associated with M1 (pro inflammatory) macrophages were enriched in tissues from idiopathic gastroparesis tissues compared to controls (p < 0.05). CONCLUSIONS: Diabetic and idiopathic gastroparesis have both unique and overlapping transcriptomic signatures. Innate immune signaling likely plays a central role in pathogenesis of human gastroparesis.


Asunto(s)
Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/inmunología , Gastroparesia/genética , Gastroparesia/inmunología , Perfilación de la Expresión Génica , Adulto , Complicaciones de la Diabetes/patología , Femenino , Gastroparesia/patología , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal/genética , Adulto Joven
7.
Gastroenterology ; 154(8): 2122-2136.e12, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29501441

RESUMEN

BACKGROUND & AIMS: Muscularis propria macrophages lie close to cells that regulate gastrointestinal motor function, including interstitial cells of Cajal (ICC) and myenteric neurons. In animal models of diabetic gastroparesis, development of delayed gastric emptying has been associated with loss of macrophages that express cytoprotective markers and reduced networks of ICC. Mice with long-term diabetes and normal gastric emptying have macrophages that express anti-inflammatory markers and have normal gastric ICC. Mice homozygous for the osteopetrosis spontaneous mutation in the colony-stimulating factor 1 gene (Csf1op/op) do not have macrophages; when they are given streptozotocin to induce diabetes, they do not develop delayed gastric emptying. We investigated whether population of the gastric muscularis propria of diabetic Csf1op/op mice with macrophages is necessary to change gastric emptying, ICC, and myenteric neurons and investigated the macrophage-derived factors that determine whether diabetic mice do or do not develop delayed gastric emptying. METHODS: Wild-type and Csf1op/op mice were given streptozotocin to induce diabetes. Some Csf1op/op mice were given daily intraperitoneal injections of CSF1 for 7 weeks; gastric tissues were collected and cellular distributions were analyzed by immunohistochemistry. CD45+, CD11b+, F4/80+ macrophages were dissociated from gastric muscularis propria, isolated by flow cytometry and analyzed by quantitative real-time polymerase chain reaction. Cultured gastric muscularis propria from Csf1op/op mice was exposed to medium that was conditioned by culture with bone marrow-derived macrophages from wild-type mice. RESULTS: Gastric muscularis propria from Csf1op/op mice given CSF1 contained macrophages; 11 of 15 diabetic mice given CSF1 developed delayed gastric emptying and had damaged ICC. In non-diabetic Csf1op/op mice, administration of CSF1 reduced numbers of gastric myenteric neurons but did not affect the proportion of nitrergic neurons or ICC. In diabetic Csf1op/op mice given CSF1 that developed delayed gastric emptying, the proportion of nitrergic neurons was the same as in non-diabetic wild-type controls. Medium conditioned by macrophages previously exposed to oxidative injury caused damage to ICC in cultured gastric muscularis propria from Csf1op/op mice; neutralizing antibodies against IL6R or TNF prevented this damage to ICC. CD45+, CD11b+, and F4/80+ macrophages isolated from diabetic wild-type mice with delayed gastric emptying expressed higher levels of messenger RNAs encoding inflammatory markers (IL6 and inducible nitric oxide synthase) and lower levels of messenger RNAs encoding markers of anti-inflammatory cells (heme oxygenase 1, arginase 1, and FIZZ1) than macrophages isolated from diabetic mice with normal gastric emptying. CONCLUSIONS: In studies of Csf1op/op and wild-type mice with diabetes, we found delayed gastric emptying to be associated with increased production of inflammatory factors, and reduced production of anti-inflammatory factors, by macrophages, leading to loss of ICC.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Vaciamiento Gástrico/fisiología , Gastroparesia/fisiopatología , Macrófagos/fisiología , Estómago/fisiopatología , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Gastroparesia/etiología , Humanos , Inmunohistoquímica , Células Intersticiales de Cajal/fisiología , Factor Estimulante de Colonias de Macrófagos/genética , Ratones , Músculo Liso/citología , Músculo Liso/patología , Músculo Liso/fisiopatología , Mutación , Estómago/citología , Estómago/patología , Estreptozocina/toxicidad
8.
Gastroenterology ; 153(2): 521-535.e20, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28438610

RESUMEN

BACKGROUND & AIMS: Depletion of interstitial cells of Cajal (ICCs) is common in diabetic gastroparesis. However, in approximately 20% of patients with diabetes, gastric emptying (GE) is accelerated. GE also occurs faster in obese individuals, and is associated with increased blood levels of glucose in patients with type 2 diabetes. To understand the fate of ICCs in hyperinsulinemic, hyperglycemic states characterized by rapid GE, we studied mice with mutation of the leptin receptor (Leprdb/db), which in our colony had accelerated GE. We also investigated hyperglycemia-induced signaling in the ICC lineage and ICC dependence on glucose oxidative metabolism in mice with disruption of the succinate dehydrogenase complex, subunit C gene (Sdhc). METHODS: Mice were given breath tests to analyze GE of solids. ICCs were studied by flow cytometry, intracellular electrophysiology, isometric contractility measurement, reverse-transcription polymerase chain reaction, immunoblot, immunohistochemistry, enzyme-linked immunosorbent assays, and metabolite assays; cells and tissues were manipulated pharmacologically and by RNA interference. Viable cell counts, proliferation, and apoptosis were determined by methyltetrazolium, Ki-67, proliferating cell nuclear antigen, bromodeoxyuridine, and caspase-Glo 3/7 assays. Sdhc was disrupted in 2 different strains of mice via cre recombinase. RESULTS: In obese, hyperglycemic, hyperinsulinemic female Leprdb/db mice, GE was accelerated and gastric ICC and phasic cholinergic responses were increased. Female KitK641E/+ mice, which have genetically induced hyperplasia of ICCs, also had accelerated GE. In isolated cells of the ICC lineage and gastric organotypic cultures, hyperglycemia stimulated proliferation by mitogen-activated protein kinase 1 (MAPK1)- and MAPK3-dependent stabilization of ets variant 1-a master transcription factor for ICCs-and consequent up-regulation of v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) receptor tyrosine kinase. Opposite changes occurred in mice with disruption of Sdhc. CONCLUSIONS: Hyperglycemia increases ICCs via oxidative metabolism-dependent, MAPK1- and MAPK3-mediated stabilization of ets variant 1 and increased expression of KIT, causing rapid GE. Increases in ICCs might contribute to the acceleration in GE observed in some patients with diabetes.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Vaciamiento Gástrico/fisiología , Hiperglucemia/fisiopatología , Células Intersticiales de Cajal/citología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-kit/fisiología , Factores de Transcripción/fisiología , Animales , Femenino , Humanos , Células Intersticiales de Cajal/fisiología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos/fisiología , Receptores de Leptina/genética , Regulación hacia Arriba
9.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G228-G245, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27979828

RESUMEN

Myenteric plexus interstitial cells of Cajal (ICC-MY) in the small intestine are Kit+ electrical pacemakers that express the Ano1/TMEM16A Ca2+-activated Cl- channel, whose functions in the gastrointestinal tract remain incompletely understood. In this study, an inducible Cre-LoxP-based approach was used to advance the understanding of Ano1 in ICC-MY of adult mouse small intestine. KitCreERT2/+;Ano1Fl/Fl mice were treated with tamoxifen or vehicle, and small intestines (mucosa free) were examined. Quantitative RT-PCR demonstrated ~50% reduction in Ano1 mRNA in intestines of conditional knockouts (cKOs) compared with vehicle-treated controls. Whole mount immunohistochemistry showed a mosaic/patchy pattern loss of Ano1 protein in ICC networks. Ca2+ transients in ICC-MY network of cKOs displayed reduced duration compared with highly synchronized controls and showed synchronized and desynchronized profiles. When matched, the rank order for Ano1 expression in Ca2+ signal imaged fields of view was as follows: vehicle controls>>>cKO(synchronized)>cKO(desynchronized). Maintenance of Ca2+ transients' synchronicity despite high loss of Ano1 indicates a large functional reserve of Ano1 in the ICC-MY network. Slow waves in cKOs displayed reduced duration and increased inter-slow-wave interval and occurred in regular- and irregular-amplitude oscillating patterns. The latter activity suggested ongoing interaction by independent interacting oscillators. Lack of slow waves and depolarization, previously reported for neonatal constitutive knockouts, were also seen. In summary, Ano1 in adults regulates gastrointestinal function by determining Ca2+ transients and electrical activity depending on the level of Ano1 expression. Partial Ano1 loss results in Ca2+ transients and slow waves displaying reduced duration, while complete and widespread absence of Ano1 in ICC-MY causes lack of slow wave and desynchronized Ca2+ transients.NEW & NOTEWORTHY The Ca2+-activated Cl- channel, Ano1, in interstitial cells of Cajal (ICC) is necessary for normal gastrointestinal motility. We knocked out Ano1 to varying degrees in ICC of adult mice. Partial knockout of Ano1 shortened the widths of electrical slow waves and Ca2+ transients in myenteric ICC but Ca2+ transient synchronicity was preserved. Near-complete knockout was necessary for transient desynchronization and loss of slow waves, indicating a large functional reserve of Ano1 in ICC.


Asunto(s)
Señalización del Calcio/genética , Canales de Cloruro/genética , Células Intersticiales de Cajal/metabolismo , Intestino Delgado/metabolismo , Plexo Mientérico/metabolismo , Animales , Anoctamina-1 , Calcio/metabolismo , Canales de Cloruro/metabolismo , Células Intersticiales de Cajal/citología , Intestino Delgado/citología , Ratones , Ratones Transgénicos , Músculo Liso/metabolismo
10.
Cell Mol Gastroenterol Hepatol ; 2(1): 40-47, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26771000

RESUMEN

BACKGROUND & AIMS: Diabetic gastroparesis is associated with changes in interstitial cells of Cajal (ICC), neurons and smooth muscle cells in both animal models and humans. Macrophages appear to be critical to the development of cellular damage that leads to delayed gastric emptying but the mechanisms involved are not well understood. Csf1op/op (Op/Op) mice lack biologically active Csf1, resulting in the absence of Csf1-dependent tissue macrophages. The aim of this study was to use Csf1op/op mice to determine the role of macrophages in the development of delayed gastric emptying. METHODS: Animals were injected with streptozotocin to make them diabetic. Gastric emptying was determined weekly. Immunohistochemistry was used to identify macrophages and ICC networks in the gastric muscular layers. Oxidative stress was measured by serum malondialdehyde (MDA) levels. Quantitative, reverse transcription PCR was used to measure levels of mRNA. RESULTS: Csf1op/op mice had normal ICC. With onset of diabetes both Csf1op/op and wild type Csf1+/+ mice developed increased levels of oxidative stress (75.8 ± 9.1 and 41.2±13.6 nmol/mL MDA respectively). Wild type Csf1+/+ mice developed delayed gastric emptying after onset of diabetes (4/13) whereas no diabetic Csf1op/op mouse developed delayed gastric emptying (0/15, P=0.035). ICC were disrupted in diabetic wild type Csf1+/+ mice with delayed gastric emptying but remained normal in diabetic Csf1op/op mice. CONCLUSIONS: Cellular injury and development of delayed gastric emptying in diabetes requires the presence of muscle layer macrophages. Targeting macrophages may be an effective therapeutic option to prevent cellular damage and development of delayed gastric emptying in diabetes.

11.
J Physiol ; 592(18): 4051-68, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25063822

RESUMEN

Interstitial cells of Cajal (ICC) are pacemaker cells that generate electrical activity to drive contractility in the gastrointestinal tract via ion channels. Ano1 (Tmem16a), a Ca(2+)-activated Cl(-) channel, is an ion channel expressed in ICC. Genetic deletion of Ano1 in mice resulted in loss of slow waves in smooth muscle of small intestine. In this study, we show that Ano1 is required to maintain coordinated Ca(2+) transients between myenteric ICC (ICC-MY) of small intestine. First, we found spontaneous Ca(2+) transients in ICC-MY in both Ano1 WT and knockout (KO) mice. However, Ca(2+) transients within the ICC-MY network in Ano1 KO mice were uncoordinated, while ICC-MY Ca(2+) transients in Ano1 WT mice were rhythmic and coordinated. To confirm the role of Ano1 in the loss of Ca(2+) transient coordination, we used pharmacological inhibitors of Ano1 activity and shRNA-mediated knock down of Ano1 expression in organotypic cultures of Ano1 WT small intestine. Coordinated Ca(2+) transients became uncoordinated using both these approaches, supporting the conclusion that Ano1 is required to maintain coordination/rhythmicity of Ca(2+) transients. We next determined the effect on smooth muscle contractility using spatiotemporal maps of contractile activity in Ano1 KO and WT tissues. Significantly decreased contractility that appeared to be non-rhythmic and uncoordinated was observed in Ano1 KO jejunum. In conclusion, Ano1 has a previously unidentified role in the regulation of coordinated gastrointestinal smooth muscle function through coordination of Ca(2+) transients in ICC-MY.


Asunto(s)
Señalización del Calcio , Canales de Cloruro/metabolismo , Células Intersticiales de Cajal/metabolismo , Yeyuno/metabolismo , Contracción Muscular , Animales , Anoctamina-1 , Calcio/metabolismo , Canales de Cloruro/genética , Células Intersticiales de Cajal/fisiología , Yeyuno/fisiología , Ratones
12.
Biochem Biophys Res Commun ; 427(2): 248-53, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22995309

RESUMEN

BACKGROUND: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca(2+)-activated Cl(-) channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16A(inh)-A01 as a specific inhibitor of Ano1. AIM: To investigate the effect of the T16A(inh)-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. METHODS: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16A(inh)-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. RESULTS: T16A(inh)-A01 inhibited Ca(2+)-activated Cl(-) currents by 60% at 10µM in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures from BALB/c mice following treatment with T16A(inh)-A01. Proliferation of the CFPAC-1 human cell-line was also reduced by T16A(inh)-A01. In organotypic cultures of smooth muscle strips from mouse jejunum, the proliferation of ICC was reduced but the total number of proliferating cells/confocal stack was not affected, suggesting that the inhibitory effect was specific for ICC. CONCLUSIONS: The selective Ano1 inhibitor T16A(inh)-A01 inhibited Ca(2+)-activated Cl(-) currents, reduced the number of proliferating ICC in culture and inhibited proliferation in the pancreatic cancer cell line CFPAC-1. These data support the notion that chloride channels in general and Ano1 in particular are involved in the regulation of proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Canales de Cloruro/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Pirimidinas/farmacología , Tiazoles/farmacología , Animales , Anoctamina-1 , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Intestino Delgado/citología , Intestino Delgado/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Músculo Liso/efectos de los fármacos
13.
Am J Physiol Gastrointest Liver Physiol ; 301(6): G1044-51, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21940901

RESUMEN

Ano1 is a recently discovered Ca(2+)-activated Cl(-) channel expressed on interstitial cells of Cajal (ICC) that has been implicated in slow-wave activity in the gut. However, Ano1 is expressed on all classes of ICC, even those that do not contribute to generation of the slow wave, suggesting that Ano1 may have an alternate function in these cells. Ano1 is also highly expressed in gastrointestinal stromal tumors. Mice lacking Ano1 had fewer proliferating ICC in whole mount preparations and in culture, raising the possibility that Ano1 is involved in proliferation. Cl(-) channel blockers decreased proliferation in cells expressing Ano1, including primary cultures of ICC and in the pancreatic cancer-derived cell line, CFPAC-1. Cl(-) channel blockers had a reduced effect on Ano1(-/-) cultures, confirming that the blockers are acting on Ano1. Ki67 immunoreactivity, 5-ethynyl-2'-deoxyuridine incorporation, and cell-cycle analysis of cells grown in low-Cl(-) media showed fewer proliferating cells than in cultures grown in regular medium. We confirmed that mice lacking Ano1 had less phosphorylated retinoblastoma protein compared with controls. These data led us to conclude that Ano1 regulates proliferation at the G(1)/S transition of the cell cycle and may play a role in tumorigenesis.


Asunto(s)
Canales de Cloruro/fisiología , Células Intersticiales de Cajal/citología , Células Intersticiales de Cajal/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias Pancreáticas/patología , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Animales , Animales Recién Nacidos , Anoctamina-1 , Antineoplásicos Hormonales/farmacología , División Celular/fisiología , Línea Celular Tumoral , Canales de Cloruro/antagonistas & inhibidores , Cloruros/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Femenino , Neoplasias Gastrointestinales/patología , Neoplasias Gastrointestinales/fisiopatología , Tumores del Estroma Gastrointestinal/patología , Tumores del Estroma Gastrointestinal/fisiopatología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/antagonistas & inhibidores , Ácido Niflúmico/farmacología , Neoplasias Pancreáticas/fisiopatología , Cultivo Primario de Células , Proteína de Retinoblastoma/metabolismo , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...