Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geophys Res Lett ; 49(18): e2022GL100100, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36583013

RESUMEN

Transpiration makes up the bulk of total evaporation in forested environments yet remains challenging to predict at landscape-to-global scales. We harnessed independent estimates of daily transpiration derived from co-located sap flow and eddy-covariance measurement systems and applied the triple collocation technique to evaluate predictions from big leaf models requiring no calibration. In total, four models in 608 unique configurations were evaluated at 21 forested sites spanning a wide diversity of biophysical attributes and environmental backgrounds. We found that simpler models that neither explicitly represented aerodynamic forcing nor canopy conductance achieved higher accuracy and signal-to-noise levels when optimally configured (rRMSE = 20%; R 2 = 0.89). Irrespective of model type, optimal configurations were those making use of key plant functional type dependent parameters, daily LAI, and constraints based on atmospheric moisture demand over soil moisture supply. Our findings have implications for more informed water resource management based on hydrological modeling and remote sensing.

2.
Environ Sci Technol ; 55(15): 10231-10242, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34264065

RESUMEN

Water consumption along value chains of goods and services has increased globally and led to increased attention on water footprinting. Most global water consumption is accounted for by evaporation (E), which is connected via bridges of atmospheric moisture transport to other regions on Earth. However, the resultant source-receptor relationships between different drainage basins have not yet been considered in water footprinting. Based on a previously developed data set on the fate of land evaporation, we aim to close this gap by using comprehensive information on evaporation recycling in water footprinting for the first time. By considering both basin internal evaporation recycling (BIER; >5% in 2% of the world's basins) and basin external evaporation recycling (BEER; >50% in 37% of the world's basins), we were able to use three types of water inventories (basin internal, basin external, and transboundary inventories), which imply different evaluation perspectives in water footprinting. Drawing on recently developed impact assessment methods, we produced characterization models for assessing the impacts of blue and green water evaporation on blue water availability for all evaluation perspectives. The results show that the negative effects of evaporation in the originating basins are counteracted (and partly overcompensated) by the positive effects of reprecipitation in receiving basins. By aggregating them, combined net impacts can be determined. While we argue that these offset results should not be used as a standalone evaluation, the water footprint community should consider atmospheric moisture recycling in future standards and guidelines.


Asunto(s)
Abastecimiento de Agua , Agua , Ingestión de Líquidos , Reciclaje
3.
Glob Chang Biol ; 26(9): 5087-5105, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32559355

RESUMEN

As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (Picea abies (L) H. Karst) on lands in various states of natural transition to a forest dominated by deciduous broadleaved tree species. Given the aspiration to bring emissions on balance with removals in the latter half of the 21st century in effort to limit the global mean temperature rise to "well below" 2°C, the effectiveness of such a policy is unclear given relatively low spruce growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counteract the benefits of an enhanced forest CO2 sink in high-latitude regions. Here, we carry out a rigorous empirically based assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale spruce planting in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting tCDR, yet given low forest growth rates in the region, notable tCDR benefits from such projects would not be realized until the second half of the 21st century, with maximum benefits occurring even later around 2150. We estimate Norway's total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (±240) and 852 (±295) Mt CO2 -eq. at mean net present values of US$ 12 (±3) and US$ 13 (±2) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway's total current annual production-based (i.e., territorial) CO2 -eq. emissions.


Asunto(s)
Dióxido de Carbono , Bosques , Secuestro de Carbono , Noruega , Árboles
4.
Environ Sci Technol ; 52(18): 10757-10766, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30028944

RESUMEN

Due to the increasing relevance of analyzing water consumption along product life cycles, the water accounting and vulnerability evaluation model (WAVE) has been updated and methodologically enhanced. Recent data from the atmospheric moisture tracking model WAM2-layers is used to update the basin internal evaporation recycling (BIER) ratio, which denotes atmospheric moisture recycling within drainage basins. Potential local impacts resulting from water consumption are quantified by means of the water deprivation index (WDI). Based on the hydrological model WaterGAP3, WDI is updated and methodologically refined to express a basin's vulnerability to freshwater deprivation resulting from the relative scarcity and absolute shortage of water. Compared to the predecessor version, BIER and WDI are provided on an increased spatial and temporal (monthly) resolution. Differences compared to annual averages are relevant in semiarid and arid basins characterized by a high seasonal variation of water consumption and availability. In order to support applicability in water footprinting and life cycle assessment, BIER and WDI are combined to an integrated WAVE+ factor, which is provided on different temporal and spatial resolutions. The applicability of the WAVE+ method is proven in a case study on sugar cane, and results are compared to those obtained by other impact assessment methods.


Asunto(s)
Agua Dulce , Agua , Ingestión de Líquidos , Reciclaje , Abastecimiento de Agua
5.
Environ Sci Technol ; 48(8): 4521-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24660893

RESUMEN

Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources.


Asunto(s)
Atmósfera/química , Agua Dulce/química , Reciclaje , Ciclo Hidrológico , Biocombustibles/análisis , Precipitación Química , Ingestión de Líquidos , Geografía , Agua Subterránea/química , Modelos Teóricos , Volatilización , Abastecimiento de Agua/análisis
6.
Proc Natl Acad Sci U S A ; 111(9): 3251-6, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344275

RESUMEN

Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.


Asunto(s)
Riego Agrícola/estadística & datos numéricos , Cambio Climático , Actividades Humanas/estadística & datos numéricos , Modelos Teóricos , Ciclo Hidrológico , Abastecimiento de Agua/estadística & datos numéricos , Simulación por Computador , Predicción , Humanos
7.
Proc Natl Acad Sci U S A ; 111(9): 3239-44, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344283

RESUMEN

We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.


Asunto(s)
Riego Agrícola/métodos , Agricultura/métodos , Cambio Climático , Modelos Teóricos , Abastecimiento de Agua/estadística & datos numéricos , Riego Agrícola/economía , Agricultura/economía , Dióxido de Carbono/análisis , Simulación por Computador , Predicción
8.
Proc Natl Acad Sci U S A ; 111(9): 3245-50, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24344289

RESUMEN

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.


Asunto(s)
Cambio Climático , Sequías/estadística & datos numéricos , Modelos Teóricos , Crecimiento Demográfico , Abastecimiento de Agua/estadística & datos numéricos , Predicción , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...