Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Hered ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412545

RESUMEN

The hoary fox (Lycalopex vetulus) is the only species of the Canidae (Mammalia: Carnivora) endemic to Brazil, and so far has been the target of few genetic studies. Using microsatellites and mtDNA markers, we investigated its present genetic diversity and population structure. We also tested the hypothesis that this species currently hybridizes with the pampas fox (L. gymnocercus), as suggested by previous mtDNA data from two individuals. We collected tissue and blood samples from animals representing most of the two species' distributions in Brazil (n = 87), including their recently discovered geographic contact zone in São Paulo state. We observed that the hoary fox exhibits high levels of genetic diversity and low levels of population structure. We identified six individuals from São Paulo state with clear evidence of hybridization based on introgressed pampas fox mtDNA and/or admixed microsatellite genotypes (three individuals bore both types of evidence). These results demonstrate the existence of admixed individuals between hoary and pampas foxes in southeastern Brazil, representing the first identified case of inter-species admixture between native South American canids. We discuss our findings in the context of the evolutionary history of these foxes and address potential conservation implications of this interspecies hybridization process.

2.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38422184

RESUMEN

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Euterios , Evolución Molecular , Regulación de la Expresión Génica , Corteza Motora , Neuronas Motoras , Proteínas , Vocalización Animal , Animales , Quirópteros/genética , Quirópteros/fisiología , Vocalización Animal/fisiología , Corteza Motora/citología , Corteza Motora/fisiología , Cromatina/metabolismo , Neuronas Motoras/fisiología , Laringe/fisiología , Epigénesis Genética , Genoma , Proteínas/genética , Proteínas/metabolismo , Secuencia de Aminoácidos , Euterios/genética , Euterios/fisiología , Aprendizaje Automático
3.
Sci Rep ; 14(1): 2395, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287072

RESUMEN

Recently, the tiger-cat species complex was split into Leopardus tigrinus and Leopardus guttulus, along with other proposed schemes. We performed a detailed analysis integrating ecological modeling, biogeography, and phenotype of the four originally recognized subspecies-tigrinus, oncilla, pardinoides, guttulus-and presented a new multidimensional niche depiction of the species. Species distribution models used > 1400 records from museums and photographs, all checked for species accuracy. Morphological data were obtained from institutional/personal archives. Spotting patterns were established by integrating museum and photographic/camera-trap records. Principal component analysis showed three clearly distinct groups, with the Central American specimens (oncilla) clustering entirely within those of the Andes, namely the pardinoides group of the cloud forests of the southern Central-American and Andean mountain chains (clouded tiger-cat); the tigrinus group of the savannas of the Guiana Shield and central/northeastern Brazil (savanna tiger-cat); and the guttulus group in the lowland forests of the Atlantic Forest domain (Atlantic Forest tiger-cat). This scheme is supported by recent genetic analyses. All species displayed different spotting patterns, with some significant differences in body measurements/proportions. The new distribution presented alarming reductions from the historic range of - 50.4% to - 68.2%. This multidimensional approach revealed a new species of the elusive and threatened tiger-cat complex.


Asunto(s)
Tigres , Animales , Filogenia , Bosques , Brasil
4.
J Hered ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150503

RESUMEN

The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, USA, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species' current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.

5.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987559

RESUMEN

Even in the genomics era, the phylogeny of Neotropical small felids comprised in the genus Leopardus remains contentious. We used whole-genome resequencing data to construct a time-calibrated consensus phylogeny of this group, quantify phylogenomic discordance, test for interspecies introgression, and assess patterns of genetic diversity and demographic history. We infer that the Leopardus radiation started in the Early Pliocene as an initial speciation burst, followed by another in its subgenus Oncifelis during the Early Pleistocene. Our findings challenge the long-held notion that ocelot (Leopardus pardalis) and margay (L. wiedii) are sister species and instead indicate that margay is most closely related to the enigmatic Andean cat (L. jacobita), whose whole-genome data are reported here for the first time. In addition, we found that the newly sampled Andean tiger cat (L. tigrinus pardinoides) population from Colombia associates closely with Central American tiger cats (L. tigrinus oncilla). Genealogical discordance was largely attributable to incomplete lineage sorting, yet was augmented by strong gene flow between ocelot and the ancestral branch of Oncifelis, as well as between Geoffroy's cat (L. geoffroyi) and southern tiger cat (L. guttulus). Contrasting demographic trajectories have led to disparate levels of current genomic diversity, with a nearly tenfold difference in heterozygosity between Andean cat and ocelot, spanning the entire range of variability found in extant felids. Our analyses improved our understanding of the speciation history and diversity patterns in this felid radiation, and highlight the benefits to phylogenomic inference of embracing the many heterogeneous signals scattered across the genome.


Asunto(s)
Felidae , Tigres , Animales , Filogenia , Felidae/genética , Evolución Biológica , Flujo Génico
6.
Science ; 380(6643): eabl8189, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37104581

RESUMEN

The precise pattern and timing of speciation events that gave rise to all living placental mammals remain controversial. We provide a comprehensive phylogenetic analysis of genetic variation across an alignment of 241 placental mammal genome assemblies, addressing prior concerns regarding limited genomic sampling across species. We compared neutral genome-wide phylogenomic signals using concatenation and coalescent-based approaches, interrogated phylogenetic variation across chromosomes, and analyzed extensive catalogs of structural variants. Interordinal relationships exhibit relatively low rates of phylogenomic conflict across diverse datasets and analytical methods. Conversely, X-chromosome versus autosome conflicts characterize multiple independent clades that radiated during the Cenozoic. Genomic time trees reveal an accumulation of cladogenic events before and immediately after the Cretaceous-Paleogene (K-Pg) boundary, implying important roles for Cretaceous continental vicariance and the K-Pg extinction in the placental radiation.


Asunto(s)
Euterios , Animales , Femenino , Evolución Biológica , Euterios/clasificación , Euterios/genética , Evolución Molecular , Fósiles , Genómica/métodos , Filogenia , Variación Genética , Factores de Tiempo
7.
Microb Ecol ; 86(1): 187-199, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35971012

RESUMEN

Periphyton communities in freshwater systems play an essential role in biogeochemical processes, but knowledge of their structure and dynamics lags far behind other environments. We used eDNA metabarcoding of 16S and 18S rRNA markers to investigate the formation and establishment of a periphytic community, in addition to a morphology-based approach for peritrich ciliate determinations, its most abundant group. We sampled two nearby sites within a large Neotropical lake at four time points, aiming to assess whether periphyton establishment can be replicated on this local scale. Producers and denitrifiers were abundant in the community, illustrating the relevant role of biofilms in freshwater nutrient recycling. Among microeukaryotes, peritrich ciliates dominated the community, with genera Epistylis and Vorticella being the most abundant and showing a clear succession at both sites. Other ciliates were morphologically identified and, in some cases, their occurrence was strongly related to bacterial abundance. The structure of both prokaryotic and eukaryotic components of periphyton was not different, while the turnover dynamics differed between the two sites, in spite of their adjacent locations and similar abiotic properties. This indicates that the establishment of these communities can vary even on a local scale within a lake ecosystem.


Asunto(s)
Cilióforos , Oligohimenóforos , Perifiton , Lagos , Ecosistema , Cilióforos/genética , Oligohimenóforos/genética
8.
Proc Natl Acad Sci U S A ; 119(34): e2205986119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969758

RESUMEN

The remarkable radiation of South American (SA) canids produced 10 extant species distributed across diverse habitats, including disparate forms such as the short-legged, hypercarnivorous bush dog and the long-legged, largely frugivorous maned wolf. Despite considerable research spanning nearly two centuries, many aspects of their evolutionary history remain unknown. Here, we analyzed 31 whole genomes encompassing all extant SA canid species to assess phylogenetic relationships, interspecific hybridization, historical demography, current genetic diversity, and the molecular bases of adaptations in the bush dog and maned wolf. We found that SA canids originated from a single ancestor that colonized South America 3.9 to 3.5 Mya, followed by diversification east of the Andes and then a single colonization event and radiation of Lycalopex species west of the Andes. We detected extensive historical gene flow between recently diverged lineages and observed distinct patterns of genomic diversity and demographic history in SA canids, likely induced by past climatic cycles compounded by human-induced population declines. Genome-wide scans of selection showed that disparate limb proportions in the bush dog and maned wolf may derive from mutations in genes regulating chondrocyte proliferation and enlargement. Further, frugivory in the maned wolf may have been enabled by variants in genes associated with energy intake from short-chain fatty acids. In contrast, unique genetic variants detected in the bush dog may underlie interdigital webbing and dental adaptations for hypercarnivory. Our analyses shed light on the evolution of a unique carnivoran radiation and how it was shaped by South American topography and climate change.


Asunto(s)
Adaptación Fisiológica , Canidae , Filogenia , Adaptación Fisiológica/genética , Animales , Canidae/clasificación , Canidae/genética , Demografía , Variación Genética , Genómica , América del Sur
9.
Curr Biol ; 32(16): 3650-3658.e4, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35779528

RESUMEN

Comparative whole-genome analyses hold great power to illuminate commonalities and differences in the evolution of related species that share similar ecologies. The mustelid subfamily Lutrinae includes 13 currently recognized extant species of otters,1-5 a semiaquatic group whose evolutionary history is incompletely understood. We assembled a dataset comprising 24 genomes from all living otter species, 14 of which were newly sequenced. We used this dataset to infer phylogenetic relationships and divergence times, to characterize patterns of genome-wide genealogical discordance, and to investigate demographic history and current genomic diversity. We found that genera Lutra, Aonyx, Amblonyx, and Lutrogale form a coherent clade that should be synonymized under Lutra, simplifying the taxonomic structure of the subfamily. The poorly known tropical African Aonyx congicus and the more widespread Aonyx capensis were found to be reciprocally monophyletic (having diverged 440,000 years ago), supporting the validity of the former as a distinct species. We observed variable changes in effective population sizes over time among otters within and among continents, although several species showed similar trends of expansions and declines during the last 100,000 years. This has led to different levels of genomic diversity assessed by overall heterozygosity, genome-wide SNV density, and run of homozygosity burden. Interestingly, there were cases in which diversity metrics were consistent with the current threat status (mostly based on census size), highlighting the potential of genomic data for conservation assessment. Overall, our results shed light on otter evolutionary history and provide a framework for further in-depth comparative genomic studies targeting this group.


Asunto(s)
Nutrias , Animales , Secuencia de Bases , Nutrias/genética , Filogenia
10.
Mol Biol Evol ; 39(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35639983

RESUMEN

Ecological differentiation among diverging species is an important component of the evolutionary process and can be investigated in rapid and recent radiations. Here, we use whole genome sequences of five species from the genus Leopardus, a recently diversified Neotropical lineage with species bearing distinctive morphological, ecological, and behavioral features, to investigate genome-wide diversity, comparative demographic history and signatures of positive selection. Our results show that divergent ecological strategies are reflected in genomic features, for example a generalist species shows historically larger effective population size and higher heterozygosity than habitat specialists. The demographic history of these cats seems to have been jointly driven by climate fluctuations and habitat specialization, with different ecological adaptations leading to distinct trajectories. Finally, a gene involved in vertebrate retinal neurogenesis (POU4F2) was found to be under positive selection in the margay, a cat with notoriously large eyes that are likely associated with its nocturnal and arboreal specializations.


Asunto(s)
Ecosistema , Genoma , Evolución Biológica , Genómica , Filogenia , Densidad de Población
13.
Mol Biol Evol ; 38(11): 4987-4991, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320647

RESUMEN

Phylogenetic reconstruction and species delimitation are often challenging in the case of recent evolutionary radiations, especially when postspeciation gene flow is present. Leopardus is a Neotropical cat genus that has a long history of recalcitrant taxonomic problems, along with both ancient and current episodes of interspecies admixture. Here, we employ genome-wide SNP data from all presently recognized Leopardus species, including several individuals from the tigrina complex (representing Leopardus guttulus and two distinct populations of Leopardus tigrinus), to investigate the evolutionary history of this genus. Our results reveal that the tigrina complex is paraphyletic, containing at least three distinct species. While one can be assigned to L. guttulus, the other two remain uncertain regarding their taxonomic assignment. Our findings indicate that the "tigrina" morphology may be plesiomorphic within this group, which has led to a longstanding taxonomic trend of lumping these poorly known felids into a single species.


Asunto(s)
Felidae , Polimorfismo de Nucleótido Simple , Animales , Felidae/genética , Flujo Génico , Genoma , Filogenia
14.
J Evol Biol ; 34(4): 614-627, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484012

RESUMEN

Identifying factors that create and maintain a hybrid zone is of great interest to ecology, evolution and, more recently, conservation biology. Here, we investigated the role of environmental features in shaping the spatial dynamics of a hybrid zone between the southern tigrina, Leopardus guttulus, and Geoffroy's cat, L. geoffroyi, testing for exogenous selection as the main force acting on its maintenance. These Neotropical felid species are mainly allopatric, with a restricted area of sympatry in the ecotone between the Atlantic Forest and Pampa biomes. As both biomes have experienced high rates of anthropogenic habitat alteration, we also analysed the influence of habitat conversion on the hybrid zone structure. To do this, we used 13 microsatellite loci to identify potential hybrids and generated ecological niche models for them and their parental species. We compared the influence of variables on parental species and hybrid occurrence and calculated the amount of niche overlap among them. Parental species showed different habitat requirements and predicted co-occurrence was restricted to the forest-grassland mosaic of the ecotone. However, hybrids were found beyond this area, mainly in the range of L. geoffroyi. Hybrids demonstrated higher tolerance to habitat alteration than parental types, with a probability of occurrence that was positively related with mosaics of cropland areas and remnants of natural vegetation. These results indicate that exogenous selection alone does not drive the dynamics of the hybrid zone, and that habitat conversion influences its structure, potentially favouring hybrids over parental species.


Asunto(s)
Distribución Animal , Ecosistema , Felidae/genética , Hibridación Genética , Modelos Biológicos , Animales , América del Sur
15.
16.
Annu Rev Anim Biosci ; 9: 125-148, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207915

RESUMEN

The diversity of mammalian coat colors, and their potential adaptive significance, have long fascinated scientists as well as the general public. The recent decades have seen substantial improvement in our understanding of their genetic bases and evolutionary relevance, revealing novel insights into the complex interplay of forces that influence these phenotypes. At the same time, many aspects remain poorly known, hampering a comprehensive understanding of these phenomena. Here we review the current state of this field and indicate topics that should be the focus of additional research. We devote particular attention to two aspects of mammalian pigmentation, melanism and pattern formation, highlighting recent advances and outstanding challenges, and proposing novel syntheses of available information. For both specific areas, and for pigmentation in general, we attempt to lay out recommendations for establishing novel model systems and integrated research programs that target the genetics and evolution of these phenotypes throughout the Mammalia.


Asunto(s)
Evolución Biológica , Mamíferos/genética , Pigmentación/genética , Pelaje de Animal/anatomía & histología , Animales , Color , Mamíferos/anatomía & histología , Filogenia
17.
Curr Biol ; 30(24): 5018-5025.e5, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33065008

RESUMEN

Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.


Asunto(s)
Felidae/genética , Flujo Genético , Especiación Genética , Distribución Animal , Animales , Diente Canino , ADN Antiguo , Extinción Biológica , Felidae/anatomía & histología , Fósiles/anatomía & histología , Genómica , Hibridación Genética , Filogenia , Recombinación Genética
18.
Proc Natl Acad Sci U S A ; 117(36): 22303-22310, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817535

RESUMEN

Penguins are the only extant family of flightless diving birds. They currently comprise at least 18 species, distributed from polar to tropical environments in the Southern Hemisphere. The history of their diversification and adaptation to these diverse environments remains controversial. We used 22 new genomes from 18 penguin species to reconstruct the order, timing, and location of their diversification, to track changes in their thermal niches through time, and to test for associated adaptation across the genome. Our results indicate that the penguin crown-group originated during the Miocene in New Zealand and Australia, not in Antarctica as previously thought, and that Aptenodytes is the sister group to all other extant penguin species. We show that lineage diversification in penguins was largely driven by changing climatic conditions and by the opening of the Drake Passage and associated intensification of the Antarctic Circumpolar Current (ACC). Penguin species have introgressed throughout much of their evolutionary history, following the direction of the ACC, which might have promoted dispersal and admixture. Changes in thermal niches were accompanied by adaptations in genes that govern thermoregulation and oxygen metabolism. Estimates of ancestral effective population sizes (Ne ) confirm that penguins are sensitive to climate shifts, as represented by three different demographic trajectories in deeper time, the most common (in 11 of 18 penguin species) being an increased Ne between 40 and 70 kya, followed by a precipitous decline during the Last Glacial Maximum. The latter effect is most likely a consequence of the overall decline in marine productivity following the last glaciation.


Asunto(s)
Evolución Molecular , Genoma/genética , Spheniscidae , Animales , Regiones Antárticas , Australia , Cambio Climático , Ecosistema , Estudio de Asociación del Genoma Completo , Nueva Zelanda , Filogenia , Selección Genética/genética , Spheniscidae/clasificación , Spheniscidae/genética , Spheniscidae/fisiología
19.
J Eukaryot Microbiol ; 67(5): 593-607, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562451

RESUMEN

To investigate patterns of biotic community composition at different spatial scales and biological contexts, we used environmental DNA metabarcoding to characterize eukaryotic and prokaryotic assemblages present in the phytotelmata of three bromeliad species (Aechmea gamosepala, Vriesea friburgensis, and Vriesea platynema) at a single Atlantic Forest site in southern Brazil. We sampled multiple individuals per species and multiple tanks from each individual, totalizing 30 samples. We observed very high levels of diversity in these communities, and remarkable variation across individuals and even among tanks from the same individual. The alpha diversity was higher for prokaryotes than eukaryotes, especially for A. gamosepala and V. platynema samples. Some biotic components appeared to be species-specific, while most of the biota was shared among species, but varied substantially in frequency among samples. Interestingly, V. friburgensis communities (which were sampled at nearby locations) tended to be more heterogeneous across samples, for both eukaryotes and prokaryotes. The opposite was true for V. platynema, whose samples were more broadly spaced but whose communities were more similar to each other. Our results indicate that additional attention should be devoted to within-individual heterogeneity when assessing bromeliad phytotelmata biodiversity, and highlight the complexity of the biotic assemblages gathered in these unique habitats.


Asunto(s)
Bromeliaceae/microbiología , Bromeliaceae/parasitología , Bacterias/aislamiento & purificación , Brasil , Eucariontes/aislamiento & purificación , Especificidad de la Especie
20.
PLoS One ; 15(5): e0232013, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374736

RESUMEN

The margay (Leopardus wiedii) is a small Neotropical arboreal wild cat. This species is thought to be forest-dependent, although few studies so far have directly evaluated the relationships between spatiotemporal aspects of its ecology and landscape characteristics. The aim of this study was to estimate margay population density and activity patterns in six areas with different habitat types and levels of anthropogenic disturbance in the southernmost Atlantic Forest of Brazil. Our working hypothesis was that density and activity patterns differed between areas in response to differences in forest cover and anthropogenic disturbance. Margay records were obtained using camera trapping, during spring and summer from 2017 to 2019. In all areas, the sampling scheme consisted of 20 un-baited stations, set 1km apart, each containing two paired cameras. We assessed the potential effects of environmental variables, including anthropogenic factors, on margay density, rate of detection and space use by comparing nine spatial capture-recapture (SCR) models. Activity patterns of the margay, its potential prey, and competitors were described and compared using the date and time of the records. We obtained 66 records of margay. Two of the six sampled areas were excluded from subsequent analyses due to the small number of records. The density estimated by the top-ranked model varied from 9.6±6.4 individuals/100km2 in the area with the highest human disturbance to 37.4±15.1 individuals/100km2 in a less disturbed area. Margay densities responded positively to vegetation cover, supporting the hypothesis of forest dependence by the species. Both the margay and their potential prey (small rodents and marsupials) were found to be mostly nocturnal. Margay activity also overlapped with that of the ocelot, Leopardus pardalis, and with mammals associated with human presence (wild boar, cattle, domestic dogs and cats). This is the first multi-area study on patterns of density and activity of the margay in the Brazilian Atlantic Forest. We concluded that the margay is mostly nocturnal, and while its densities are positively influenced by forest cover and negatively influenced by human disturbance, the activity pattern of the species does not seem to change across landscapes with distinct levels of human modification. Margay populations seem to be able to persist under moderate levels of habitat modification, highlighting the importance of preserving even small native forest remnants in the highly fragmented Atlantic Forest.


Asunto(s)
Conducta Animal/fisiología , Ecosistema , Felidae , Bosques , Pelaje de Animal , Sistemas de Identificación Animal , Migración Animal/fisiología , Animales , Brasil/epidemiología , Conservación de los Recursos Naturales/métodos , Demografía , Especies en Peligro de Extinción , Felidae/fisiología , Actividades Humanas , Densidad de Población , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...