Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 56(4): 582-594, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29040064

RESUMEN

Background A number of factors regarding blood collection, handling and storage may affect sample quality. The purpose of this study was to assess the impact on plasma protein profiles by delayed centrifugation and plasma separation and multiple freeze-thaw cycles. Methods Blood samples drawn from 16 healthy individuals were collected into ethylenediaminetetraacetic acid tubes and kept either at 4 °C or 22 °C for 1-36 h prior to centrifugation. Plasma samples prepared 1 h after venipuncture were also subjected to two to eight cycles of freezing at -80 °C and thawing at 22 °C. Multiplex proximity extension assay, an antibody-based protein assay, was used to investigate the influence on plasma proteins. Results Up to 36 h delay before blood centrifugation resulted in significant increases of 16 and 40 out of 139 detectable proteins in samples kept at 4 °C or 22 °C, respectively. Some increases became noticeable after 8 h delay at 4 °C but already after 1 h at 22 °C. For samples stored at 4 °C, epidermal growth factor (EGF), NF-kappa-B essential modulator, SRC, interleukin 16 and CD6 increased the most, whereas the five most significantly increased proteins after storage at 22 °C were CD40 antigen ligand (CD40-L), EGF, platelet-derived growth factor subunit B, C-X-C motif chemokine ligand 5 and matrix metallopeptidase 1 (MMP1). Only matrix metallopeptidase 7 (MMP7) decreased significantly over time and only after storage at 22 °C. No protein levels were found to be significantly affected by up to eight freeze-thaw cycles. Conclusions Plasma should be prepared from blood after a limited precentrifugation delay at a refrigerated temperature. By contrast, the influence by several freeze-thaw cycles on detectable protein levels in plasma was negligible.


Asunto(s)
Proteínas Sanguíneas/análisis , Recolección de Muestras de Sangre/métodos , Centrifugación/métodos , Congelación , Ensayos Analíticos de Alto Rendimiento , Manejo de Especímenes , Adulto , Anticuerpos/inmunología , Ácido Edético/sangre , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
J Circ Biomark ; 5: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28936257

RESUMEN

The indicating FTA elute micro card™ has been developed to collect and stabilize the nucleic acid in biological samples and is widely used in human and veterinary medicine and other disciplines. This card is not recommended for protein analyses, since surface treatment may denature proteins. We studied the ability to analyse proteins in human plasma and vaginal fluid as applied to the indicating FTA elute micro card™ using the sensitive proximity extension assay (PEA). Among 92 proteins in the Proseek Multiplex Oncology Iv2 panel, 87 were above the limit of detection (LOD) in liquid plasma and 56 among 92 above LOD in plasma applied to FTA cards. Washing and protein elution protocols were compared to identify an optimal method. Liquid-based cytology samples showed a lower number of proteins above LOD than FTA cards with vaginal fluid samples applied. Our results demonstrate that samples applied to the indicating FTA elute micro card™ are amendable to protein analyses, given that a sensitive protein detection assay is used. The results imply that biological samples applied to FTA cards can be used for DNA, RNA and protein detection.

4.
PLoS One ; 9(4): e95192, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24755770

RESUMEN

Medical research is developing an ever greater need for comprehensive high-quality data generation to realize the promises of personalized health care based on molecular biomarkers. The nucleic acid proximity-based methods proximity ligation and proximity extension assays have, with their dual reporters, shown potential to relieve the shortcomings of antibodies and their inherent cross-reactivity in multiplex protein quantification applications. The aim of the present study was to develop a robust 96-plex immunoassay based on the proximity extension assay (PEA) for improved high throughput detection of protein biomarkers. This was enabled by: (1) a modified design leading to a reduced number of pipetting steps compared to the existing PEA protocol, as well as improved intra-assay precision; (2) a new enzymatic system that uses a hyper-thermostabile enzyme, Pwo, for uniting the two probes allowing for room temperature addition of all reagents and improved the sensitivity; (3) introduction of an inter-plate control and a new normalization procedure leading to improved inter-assay precision (reproducibility). The multiplex proximity extension assay was found to perform well in complex samples, such as serum and plasma, and also in xenografted mice and resuspended dried blood spots, consuming only 1 µL sample per test. All-in-all, the development of the current multiplex technique is a step toward robust high throughput protein marker discovery and research.


Asunto(s)
Inmunoensayo/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , Proteínas Sanguíneas/metabolismo , Reacciones Cruzadas , ADN Polimerasa Dirigida por ADN/metabolismo , Pruebas con Sangre Seca , Estabilidad de Enzimas , Femenino , Xenoinjertos , Humanos , Ratones Desnudos , Oligonucleótidos/metabolismo , Sensibilidad y Especificidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...