Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 19(5): e11148, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36938679

RESUMEN

Early-life stress can result in life-long effects that impact adult health and disease risk, but little is known about how such programming is established and maintained. Here, we show that such epigenetic memories can be initiated in the Drosophila embryo before the major wave of zygotic transcription, and higher-order chromatin structures are established. An early short heat shock results in elevated levels of maternal miRNA and reduced levels of a subgroup of zygotic genes in stage 5 embryos. Using a Dicer-1 mutant, we show that the stress-induced decrease in one of these genes, the insulator-binding factor Elba1, is dependent on functional miRNA biogenesis. Reduction in Elba1 correlates with the upregulation of early developmental genes and promotes a sustained weakening of heterochromatin in the adult fly as indicated by an increased expression of the PEV wm4h reporter. We propose that maternal miRNAs, retained in response to an early embryonic heat shock, shape the subsequent de novo heterochromatin establishment that occurs during early development via direct or indirect regulation of some of the earliest expressed genes, including Elba1.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Drosophila/genética , Drosophila/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Drosophila melanogaster/metabolismo
2.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245348

RESUMEN

The hypothalamus displays staggering cellular diversity, chiefly established during embryogenesis by the interplay of several signalling pathways and a battery of transcription factors. However, the contribution of epigenetic cues to hypothalamus development remains unclear. We mutated the polycomb repressor complex 2 gene Eed in the developing mouse hypothalamus, which resulted in the loss of H3K27me3, a fundamental epigenetic repressor mark. This triggered ectopic expression of posteriorly expressed regulators (e.g. Hox homeotic genes), upregulation of cell cycle inhibitors and reduced proliferation. Surprisingly, despite these effects, single cell transcriptomic analysis revealed that most neuronal subtypes were still generated in Eed mutants. However, we observed an increase in glutamatergic/GABAergic double-positive cells, as well as loss/reduction of dopamine, hypocretin and Tac2-Pax6 neurons. These findings indicate that many aspects of the hypothalamic gene regulatory flow can proceed without the key H3K27me3 epigenetic repressor mark, but points to a unique sensitivity of particular neuronal subtypes to a disrupted epigenomic landscape.


Asunto(s)
Desarrollo Embrionario/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Complejo Represivo Polycomb 2/genética , Proteínas del Grupo Polycomb/genética , Animales , Proliferación Celular/genética , Represión Epigenética/genética , Femenino , Masculino , Ratones , Mutación/genética , Transcriptoma/genética
3.
Development ; 146(13)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289041

RESUMEN

During cell cycle progression, the activity of the CycE-Cdk2 complex gates S-phase entry. CycE-Cdk2 is inhibited by CDK inhibitors (CKIs) of the Cip/Kip family, which include the human p21Cip1 and Drosophila Dacapo (Dap) proteins. Both the CycE and Cip/Kip family proteins are under elaborate control via protein degradation, mediated by the Cullin-RING ligase (CRL) family of ubiquitin ligase complexes. The CRL complex SCFFbxw7/Ago targets phosphorylated CycE, whereas p21Cip1 and Dap are targeted by the CRL4Cdt2 complex, binding to the PIP degron. The role of CRL-mediated degradation of CycE and Cip/Kip proteins during CNS development is not well understood. Here, we analyse the role of ago (Fbxw7)-mediated CycE degradation, and of Dap and p21Cip1 degradation during Drosophila CNS development. We find that ago mutants display over-proliferation, accompanied by elevated CycE expression levels. By contrast, expression of PIP degron mutant Dap and p21Cip1 transgenes inhibit proliferation. However, surprisingly, this is also accompanied by elevated CycE levels. Hence, ago mutation and PIP degron Cip/Kip transgenic expression trigger opposite effects on proliferation, but similar effects on CycE levels.


Asunto(s)
Proliferación Celular/genética , Ciclina E/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas F-Box/genética , Mutación , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Ciclina E/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Embrión de Mamíferos , Proteínas F-Box/fisiología , Mutación/fisiología , Proteínas Nucleares/química , Fragmentos de Péptidos/química , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Estabilidad Proteica
4.
Development ; 146(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30837222

RESUMEN

The nervous system displays a daunting cellular diversity. Neuronal subtypes differ from each other in several aspects, including their neurotransmitter expression and axon projection. These aspects can converge, but can also diverge, such that neurons expressing the same neurotransmitter may project axons to different targets. It is not well understood how regulatory programs converge/diverge to associate/dissociate different cell fate features. Studies of the Drosophila Tv1 neurons have identified a regulatory cascade, ladybird early→collier→apterous/eyes absent→dimmed, that specifies Tv1 neurotransmitter expression. Here, we conduct genetic and transcriptome analysis to address how other aspects of Tv1 cell fate are governed. We find that an initiator terminal selector gene triggers a feedforward loop that branches into different subroutines, each of which establishes different features of this one unique neuronal cell fate.


Asunto(s)
Drosophila melanogaster/genética , Redes Reguladoras de Genes , Neuronas/citología , Animales , Axones/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Linaje de la Célula , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM/genética , Microscopía Confocal , Neurotransmisores/genética , Análisis de Secuencia de ARN , Transducción de Señal , Factores de Transcripción/genética , Transcriptoma
5.
Dev Cell ; 43(3): 332-348.e4, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29112852

RESUMEN

Great progress has been made in identifying transcriptional programs that establish stem cell identity. In contrast, we have limited insight into how these programs are down-graded in a timely manner to halt proliferation and allow for cellular differentiation. Drosophila embryonic neuroblasts undergo such a temporal progression, initially dividing to bud off daughters that divide once (type I), then switching to generating non-dividing daughters (type 0), and finally exiting the cell cycle. We identify six early transcription factors that drive neuroblast and type I daughter proliferation. Early factors are gradually replaced by three late factors, acting to trigger the type I→0 daughter proliferation switch and eventually to stop neuroblasts. Early and late factors regulate each other and four key cell-cycle genes, providing a logical genetic pathway for these transitions. The identification of this extensive driver-stopper temporal program controlling neuroblast lineage progression may have implications for studies in many other systems.


Asunto(s)
Ciclo Celular/fisiología , Linaje de la Célula , Proliferación Celular/fisiología , Drosophila melanogaster/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células-Madre Neurales/citología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
6.
PLoS Biol ; 5(2): e37, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17298176

RESUMEN

Neuronal specification is often seen as a multistep process: earlier regulators confer broad neuronal identity and are followed by combinatorial codes specifying neuronal properties unique to specific subtypes. However, it is still unclear whether early regulators are re-deployed in subtype-specific combinatorial codes, and whether early patterning events act to restrict the developmental potential of postmitotic cells. Here, we use the differential peptidergic fate of two lineage-related peptidergic neurons in the Drosophila ventral nerve cord to show how, in a feedforward mechanism, earlier determinants become critical players in later combinatorial codes. Amongst the progeny of neuroblast 5-6 are two peptidergic neurons: one expresses FMRFamide and the other one expresses Nplp1 and the dopamine receptor DopR. We show the HLH gene collier functions at three different levels to progressively restrict neuronal identity in the 5-6 lineage. At the final step, collier is the critical combinatorial factor that differentiates two partially overlapping combinatorial codes that define FMRFamide versus Nplp1/DopR identity. Misexpression experiments reveal that both codes can activate neuropeptide gene expression in vast numbers of neurons. Despite their partially overlapping composition, we find that the codes are remarkably specific, with each code activating only the proper neuropeptide gene. These results indicate that a limited number of regulators may constitute a potent combinatorial code that dictates unique neuronal cell fate, and that such codes show a surprising disregard for many global instructive cues.


Asunto(s)
Diferenciación Celular/genética , Drosophila/citología , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Animales , Linaje de la Célula , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , FMRFamida/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Proteínas de la Membrana/metabolismo , Neuronas/clasificación , Neuronas/citología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Receptores Dopaminérgicos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA