Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3359, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336871

RESUMEN

Research on microorganisms in various biotopes is required to identify new, natural potent molecules. These molecules are essential to control the development of multi-drug resistance (MDR). In the present study, a Streptomyces sp., namely SCJ, was isolated from a soil sample collected from a Moroccan garden. SCJ isolate was identified on the basis of a polyphasic approach, which included cultural, micro-morphological, biochemical, and physiological characteristics. The sequence of the 16S rRNA gene of the SCJ strain showed 99.78% similarity to strains of Streptomyces coeruleofuscus YR-T (KY753282.1). The preliminary screening indicated that the SCJ isolate exhibited activity against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus CECT 976, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, Pseudomonas aeruginosa ATCC 27,853, as well as various other clinical MDR bacteria and five phytopathogenic fungi. The ethyl acetate extract of the isolated strain demonstrated highly significant (p < 0.05) antimicrobial activity against multi-resistant bacteria and phytopathogenic fungi. The absorption spectral analysis of the ethyl acetate extract of the SCJ isolate obtained showed no absorption peaks characteristic of polyene molecules. Moreover, no hemolytic activity against erythrocytes was observed in this extract. GC-MS analysis of the ethyl acetate extract of the SCJ isolate revealed the presence of 9 volatile compounds including 3,5-Dimethylpyrazole, and pyrrolizidine derivatives (Pyrrolo[1,2-a]pyrazine 1,4-dione, hexahydro-3-(2-methylpropyl)), which could potentially explain the antimicrobial activity demonstrated in this study.


Asunto(s)
Acetatos , Antiinfecciosos , Streptomyces , Suelo , Jardines , ARN Ribosómico 16S/genética , Marruecos , Antiinfecciosos/farmacología , Streptomyces/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
2.
Sci Rep ; 12(1): 17233, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241756

RESUMEN

The increasing demand for new bioactive compounds to combat the evolution of multi-drug resistance (MDR) requires research on microorganisms in different environments in order to identify new potent molecules. In this study, initial screening regarding the antimicrobial activity of 44 Actinomycetes isolates isolated from three soil samples from three different extremely cold sites in Morocco was carried out. Primary and secondary screening were performed against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, other clinical MDR bacteria, and thirteen phytopathogenic fungi. Based on the results obtained, 11 active isolates were selected for further study. The 11microbial isolates were identified based on morphological and biochemical characters and their molecular identification was performed using 16S rRNA sequence homology. The UV-visible analysis of dichloromethane extracts of the five Streptomyces sp. Strains that showed high antimicrobial and antioxidant (ABTS 35.8% and DPPH 25.6%) activities revealed the absence of polyene molecules. GC-MS analysis of the dichloromethane extract of E23-4 as the most active strain revealed the presence of 21 volatile compounds including Pyrrolopyrazine (98%) and Benzeneacetic acid (90%). In conclusion, we studied the isolation of new Streptomyces strains to produce new compounds with antimicrobial and antioxidant activities in a cold and microbiologically unexplored region of Morocco. Furthermore, this study has demonstrated a significant (P < 0.0001) positive correlation between total phenolic and flavonoid contents and antioxidant capacity, paving the way for the further characterization of these Streptomyces sp. isolates for their optimal use for anticancer, antioxidant, and antimicrobial purposes.


Asunto(s)
Antiinfecciosos , Streptomyces , Antibacterianos , Antiinfecciosos/química , Antioxidantes/farmacología , Candida albicans/genética , Flavonoides , Cloruro de Metileno , Pruebas de Sensibilidad Microbiana , Marruecos , Extractos Vegetales , Polienos , ARN Ribosómico 16S/genética , Suelo , Streptomyces/química
3.
Sci Rep ; 12(1): 7590, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534607

RESUMEN

Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) or prickly pear cochineal, is the most damaging pest on cactus species with heavy economic losses worldwide. The efficacy of two Moroccan EPN isolates; Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora (Poinar) (Rhabditida: Heterorhabditidae) (applied at 25, 50, and 75 IJs cm-2) against D. opuntiae nymphs and young females were evaluated under both laboratory bioassays and field conditions. Results showed that S. feltiae was more effective, causing higher mortality of nymphs and adult females (98.8% and 97.5%, respectively) after 8 days of exposure, resulting in an LT50 value of 5.9 days (nymph) and 6.0 days (young female). While, H. bacteriophora had lower mortalities (83.8% for nymph and 81.3% for adult females). For the cochineal nymphs and adult females, no significant difference was observed among S. feltiae at 25, 50, and 75 IJs cm-2, and the positive control, D-limonene applied at 0.5 g/L which was used due to its high effectiveness against nymphs and females of D. opuntiae. In the field experiment, D-limonene at 0.5 g/L and S. feltiae applied at 75 IJs cm-2 were effective in reducing nymph and adult female populations by 85.3-93.9% at 12 days of post exposure period. To our knowledge, this work is the first report on the use of EPNs to control D. opuntiae. Thus, in addition to D-limonene, both Moroccan EPN isolates S. feltiae, and H. bacteriophora could be used as part of the integrated pest management strategy against D. opuntiae. Many factors such as temperature can affect the establishment and effectiveness of EPNs under field conditions. Therefore, additional studies under field conditions are needed.


Asunto(s)
Hemípteros , Rabdítidos , Animales , Carmín , Femenino , Limoneno , Ninfa , Control Biológico de Vectores
4.
Insects ; 13(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35621762

RESUMEN

The effect of temperature on Dactylopius opuntiae (Cockerell) life cycle parameters was evaluated at 20, 23, 26, 32, and 40 ± 1 °C, 65 ± 5% RH, and a photoperiod of 12 L:8 D. Temperatures ranging from 26 °C to 32 °C were suitable for survival, development, and reproduction of D. opuntiae. The total developmental time of females ranged from 94.23 d (20 °C) to 43.55 d (40 °C). The average development time of males from egg to death ranged from 26.97 days at 32 °C to 50.75 days at 20 °C. The probability that a newly laid egg would survive to the adult stage was highest at 26 °C and 32 °C (44-60%). The parthenogenesis in females was not observed during our study. The longest oviposition period was observed when the cochineal was reared at 32 °C (17.97 days), and the highest fecundity was observed at 32 °C (355.29 egg/female). The highest proportion of females (0.80) was observed at 40 °C. According to the age-stage-two-sex life table, the highest value of the intrinsic rate of natural increase (rm) was recorded at 32 °C. The lower developmental thresholds for the total pre-adult female and male and adult female and male stages, were 10.15, 12.21, 10.54, and 21.04 °C, respectively. Dactylopius opuntiae females needed a higher thermal constant (769.23 D°) than males (357.14 D°) to achieve their development and reach the mature adult stage. These findings will be useful for the development of an integrated pest management strategy for D. opuntiae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...