Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 368(1917): 1937-61, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20308110

RESUMEN

The biomineral calcium hydrogen phosphate dihydrate (CaHPO(4).2H(2)O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite's excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives.


Asunto(s)
Materiales Biocompatibles/química , Fosfatos de Calcio/química , Anisotropía , Calcio/química , Cristalización , Difosfonatos/química , Electrones , Cinética , Microscopía de Sonda de Barrido/métodos , Modelos Estadísticos , Oxalatos/química , Fosfatos/química , Dispersión de Radiación , Sefarosa/química
2.
Mol Cell Proteomics ; 8(8): 1823-31, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19406753

RESUMEN

Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrated protein immobilization utilizing nanoarrays fabricated via photocatalytic nanolithography on silicon substrates where the immobilized proteins are surrounded by a non-fouling polymer background.


Asunto(s)
Proteínas Inmovilizadas/análisis , Nanotecnología/métodos , Porfirinas/química , Proteómica/métodos , Catálisis/efectos de la radiación , Proteínas Inmovilizadas/química , Luz , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Análisis por Matrices de Proteínas/métodos , Proteómica/instrumentación , Silicio/química
3.
Nano Lett ; 9(3): 1158-63, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19193021

RESUMEN

The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread in orientations within individual grains. Initially, most grains develop in-plane tensile stresses, which are partly released during further dealloying. Simultaneously, the feature size of the developing nanoporous structure increases with increasing dealloying time. Finally, microdiffraction experiments on dealloyed micron-sized nanoporous pillars reveal significant surface damage introduced by focused ion beam milling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA