Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 15(8): e0009575, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351896

RESUMEN

Since the 2015 to 2016 outbreak in America, Zika virus (ZIKV) infected almost 900,000 patients. This international public health emergency was mainly associated with a significant increase in the number of newborns with congenital microcephaly and abnormal neurologic development, known as congenital Zika syndrome (CZS). Furthermore, Guillain-Barré syndrome (GBS), a neuroimmune disorder of adults, has also been associated with ZIKV infection. Currently, the number of ZIKV-infected patients has decreased, and most of the cases recently reported present as a mild and self-limiting febrile illness. However, based on its natural history of a typical example of reemerging pathogen and the lack of specific therapeutic options against ZIKV infection, new outbreaks can occur worldwide, demanding the attention of researchers and government authorities. Here, we discuss the clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. Several studies have confirmed the tropism of ZIKV for neural progenitor stem cells by demonstrating the presence of ZIKV in the central nervous system (CNS) during fetal development, eliciting a deleterious inflammatory response that compromises neurogenesis and brain formation. Of note, while the neuropathology of CZS can be due to a direct viral neuropathic effect, adults may develop neuroimmune manifestations such as GBS due to poorly understood mechanisms. Antiganglioside autoantibodies have been detected in multiple patients with ZIKV infection-associated GBS, suggesting a molecular mimicry. However, further additional immunopathological mechanisms remain to be uncovered, paving the way for new therapeutic strategies.


Asunto(s)
Encéfalo/embriología , Síndrome de Guillain-Barré/virología , Microcefalia/virología , Infección por el Virus Zika/patología , Virus Zika/patogenicidad , Animales , Encéfalo/virología , Femenino , Síndrome de Guillain-Barré/etiología , Humanos , Ratones , Células-Madre Neurales/virología , Embarazo , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/virología
2.
Front Immunol ; 10: 2742, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849949

RESUMEN

Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Síndromes de Inmunodeficiencia/diagnóstico , Animales , Autoinmunidad , Humanos , Inmunofenotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA