Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(1): 78-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919423

RESUMEN

The flexibility of motor actions is ingrained in the diversity of neurons and how they are organized into functional circuit modules, yet our knowledge of the molecular underpinning of motor circuit modularity remains limited. Here we use adult zebrafish to link the molecular diversity of motoneurons (MNs) and the rhythm-generating V2a interneurons (INs) with the modular circuit organization that is responsible for changes in locomotor speed. We show that the molecular diversity of MNs and V2a INs reflects their functional segregation into slow, intermediate or fast subtypes. Furthermore, we reveal shared molecular signatures between V2a INs and MNs of the three speed circuit modules. Overall, by characterizing how the molecular diversity of MNs and V2a INs relates to their function, connectivity and behavior, our study provides important insights not only into the molecular mechanisms for neuronal and circuit diversity for locomotor flexibility but also for charting circuits for motor actions in general.


Asunto(s)
Locomoción , Pez Cebra , Animales , Pez Cebra/fisiología , Locomoción/genética , Neuronas Motoras/fisiología , Interneuronas/fisiología , Médula Espinal/fisiología
2.
Curr Opin Neurobiol ; 82: 102760, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597455

RESUMEN

Our movements and actions stem from complex processes in the central nervous system. Precise adaptation of locomotor movements is essential for effectively interacting with the environment. To understand the mechanisms underlying these movements, it is crucial to determine the organization of spinal circuits at the level of individual neurons and synapses. This review highlights the insights gained from studying spinal circuits in adult zebrafish and discusses their broader implications for our understanding of locomotor control across species.


Asunto(s)
Sistema Nervioso Central , Pez Cebra , Animales , Movimiento , Neuronas , Sinapsis
3.
Neuron ; 111(3): 372-386.e4, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413988

RESUMEN

The flexibility of locomotor movements requires an accurate control of their start, duration, and speed. How brainstem circuits encode and convey these locomotor parameters remains unclear. Here, we have combined in vivo calcium imaging, electrophysiology, anatomy, and behavior in adult zebrafish to address these questions. We reveal that the detailed parameters of locomotor movements are encoded by two molecularly, topographically, and functionally segregated glutamatergic neuron subpopulations within the nucleus of the medial longitudinal fasciculus. The start, duration, and changes of locomotion speed are encoded by vGlut2+ neurons, whereas vGlut1+ neurons encode sudden changes to high speed/high amplitude movements. Ablation of vGlut2+ neurons compromised slow-explorative swimming, whereas vGlut1+ neuron ablation impaired fast swimming. Our results provide mechanistic insights into how separate brainstem subpopulations implement flexible locomotor commands. These two brainstem command subpopulations are suitably organized to integrate environmental cues and hence generate flexible swimming movements to match the animal's behavioral needs.


Asunto(s)
Natación , Pez Cebra , Animales , Pez Cebra/fisiología , Médula Espinal/fisiología , Tronco Encefálico/fisiología , Neuronas/fisiología , Locomoción/fisiología
4.
Curr Biol ; 32(16): 3515-3528.e4, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35853456

RESUMEN

During development, all animals undergo major adaptations to accommodate behavioral flexibility and diversity. How these adaptations are reflected in the changes in the motor circuits controlling our behaviors remains poorly understood. Here, we show, using a combination of techniques applied at larval and adult zebrafish stages, that the pattern-generating V0d inhibitory interneurons within the locomotor circuit undergo a developmental switch in their role. In larvae, we show that V0d interneurons have a primary function in high-speed motor behavior yet are redundant for explorative swimming. By contrast, adult V0d interneurons have diversified into speed-dependent subclasses, with an overrepresentation of those active at the slowest speeds. The ablation of V0d interneurons in adults disrupts slow explorative swimming, which is associated with a loss of mid-cycle inhibition onto target motoneurons. Thus, we reveal a developmental switch in V0d interneuron function from a role in high-speed motor behavior to a function in timing and thus coordinating slow explorative locomotion. Our study suggests that early motor circuit composition is not predictive of the adult system but instead undergoes major functional transformations during development.


Asunto(s)
Médula Espinal , Pez Cebra , Animales , Interneuronas/fisiología , Larva , Locomoción/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Pez Cebra/fisiología
5.
Cell Rep ; 39(2): 110654, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417694

RESUMEN

Locomotion is mediated by spinal circuits that generate movements with a precise coordination and vigor. The assembly of these circuits is defined early during development; however, whether their organization and function remain invariant throughout development is unclear. Here, we show that the first established fast circuit between two dorsally located V2a interneuron types and the four primary motoneurons undergoes major transformation in adult zebrafish compared with what was reported in larvae. There is a loss of existing connections and establishment of new connections combined with alterations in the mode, plasticity, and strength of synaptic transmission. In addition, we show that this circuit no longer serves as a swim rhythm generator, but instead its components become embedded within the spinal escape circuit and control propulsion following the initial escape turn. Our results thus reveal significant changes in the organization and function of a motor circuit as animals develop toward adulthood.


Asunto(s)
Neuronas Motoras , Pez Cebra , Animales , Interneuronas/fisiología , Locomoción/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Pez Cebra/fisiología
6.
STAR Protoc ; 3(4): 101868, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595947

RESUMEN

In adult zebrafish, slow, intermediate, and fast muscle fibers occupy distinct regions of the axial muscle, allowing the use of retrograde tracers for selective targeting of the motoneurons (MNs) innervating them. Here, we describe a protocol to label distinct MN pools and tissue processing for visualization with confocal laser microscopy. We outline the different steps for selective labeling of primary and secondary MNs together with spinal cord fixation, isolation, mounting, and imaging. For complete details on the use and execution of this protocol, please refer to Pallucchi et al. (2022)1 and Ampatzis et al. (2013).2.


Asunto(s)
Neuronas Motoras , Pez Cebra , Animales , Médula Espinal/diagnóstico por imagen , Músculos , Inyecciones
7.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34663699

RESUMEN

In vertebrates, action selection often involves higher cognition entailing an evaluative process. However, urgent tasks, such as defensive escape, require an immediate implementation of the directionality of escape trajectory, necessitating local circuits. Here we reveal a specialized spinal circuit for the execution of escape direction in adult zebrafish. A central component of this circuit is a unique class of segmentally repeating cholinergic V2a interneurons expressing the transcription factor Chx10. These interneurons amplify brainstem-initiated escape commands and rapidly deliver the excitation via a feedforward circuit to all fast motor neurons and commissural interneurons to direct the escape maneuver. The information transfer within this circuit relies on fast and reliable axo-axonic synaptic connections, bypassing soma and dendrites. Unilateral ablation of cholinergic V2a interneurons eliminated escape command propagation. Thus, in vertebrates, local spinal circuits can implement directionality of urgent motor actions vital for survival.


Asunto(s)
Conducta Animal , Médula Espinal/fisiología , Animales , Interneuronas/fisiología , Locomoción/fisiología , Natación/fisiología , Pez Cebra/fisiología
8.
Neuron ; 109(7): 1188-1201.e7, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577748

RESUMEN

Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.


Asunto(s)
Retroalimentación Sensorial/fisiología , Movimiento/fisiología , Propiocepción/fisiología , Pez Cebra/fisiología , Animales , Generadores de Patrones Centrales/fisiología , Femenino , Interneuronas/fisiología , Canales Iónicos/fisiología , Locomoción/fisiología , Masculino , Mecanotransducción Celular , Neuronas Motoras/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , ARN/genética , Células Receptoras Sensoriales/fisiología , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiología , Tomografía Computarizada por Rayos X , Proteínas de Pez Cebra/fisiología
9.
Neuron ; 105(6): 1048-1061.e4, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31982322

RESUMEN

In vertebrates, specific command centers in the brain can selectively drive slow-explorative or fast-speed locomotion. However, it remains unclear how the locomotor central pattern generator (CPG) processes descending drive into coordinated locomotion. Here, we reveal, in adult zebrafish, a logic of the V2a interneuron rhythm-generating circuits involving recurrent and hierarchical connectivity that acts in tandem with pacemaker properties to provide an ignition and gear-shift mechanism to start locomotion and change speed. A comprehensive mapping of synaptic connections reveals three recurrent circuit modules engaged sequentially to increase locomotor speed. The connectivity between V2a interneurons of different modules displayed a clear asymmetry in favor of connections from faster to slower modules. The interplay between V2a interneuron pacemaker properties and their organized connectivity provides a mechanism for locomotor initiation and speed control. Thus, our results provide mechanistic insights into how the spinal CPG transforms descending drive into locomotion and align its speed with the initial intention.


Asunto(s)
Relojes Biológicos/fisiología , Generadores de Patrones Centrales/fisiología , Locomoción/fisiología , Vías Nerviosas/fisiología , Animales , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Pez Cebra
10.
Physiol Rev ; 100(1): 271-320, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31512990

RESUMEN

The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.


Asunto(s)
Sistema Nervioso Central/fisiología , Locomoción , Vertebrados/fisiología , Animales , Ganglios Basales/fisiología , Evolución Biológica , Cerebelo/fisiología , Humanos , Lampreas/genética , Lampreas/fisiología , Ratones , Médula Espinal/fisiología , Vertebrados/genética , Pez Cebra/genética , Pez Cebra/fisiología
11.
Science ; 365(6454): 695-699, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31416963

RESUMEN

An essential prerequisite for the survival of an organism is the ability to detect and respond to aversive stimuli. Current belief is that noxious stimuli directly activate nociceptive sensory nerve endings in the skin. We discovered a specialized cutaneous glial cell type with extensive processes forming a mesh-like network in the subepidermal border of the skin that conveys noxious thermal and mechanical sensitivity. We demonstrate a direct excitatory functional connection to sensory neurons and provide evidence of a previously unknown organ that has an essential physiological role in sensing noxious stimuli. Thus, these glial cells, which are intimately associated with unmyelinated nociceptive nerves, are inherently mechanosensitive and transmit nociceptive information to the nerve.


Asunto(s)
Percepción del Dolor/fisiología , Células de Schwann/fisiología , Piel/inervación , Animales , Femenino , Masculino , Mecanorreceptores/fisiología , Ratones , Ratones Endogámicos C57BL , Nociceptores/fisiología , Optogenética , Umbral del Dolor , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Células de Schwann/metabolismo , Termorreceptores/fisiología
12.
Front Neural Circuits ; 12: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271327

RESUMEN

Locomotor behaviors are critical for survival and enable animals to navigate their environment, find food and evade predators. The circuits in the brain and spinal cord that initiate and maintain such different modes of locomotion in vertebrates have been studied in numerous species for over a century. In recent decades, the zebrafish has emerged as one of the main model systems for the study of locomotion, owing to its experimental amenability, and work in zebrafish has revealed numerous new insights into locomotor circuit function. Here, we review the literature that has led to our current understanding of the neural circuits controlling swimming and escape in zebrafish. We highlight recent studies that have enriched our comprehension of key topics, such as the interactions between premotor excitatory interneurons (INs) and motoneurons (MNs), supraspinal and spinal circuits that coordinate escape maneuvers, and developmental changes in overall circuit composition. We also discuss roles for neuromodulators and sensory inputs in modifying the relative strengths of constituent circuit components to provide flexibility in zebrafish behavior, allowing the animal to accommodate changes in the environment. We aim to provide a coherent framework for understanding the circuitry in the brain and spinal cord of zebrafish that allows the animal to flexibly transition between different speeds, and modes, of locomotion.


Asunto(s)
Locomoción/fisiología , Modelos Animales , Red Nerviosa/fisiología , Natación/fisiología , Pez Cebra/fisiología , Animales , Humanos , Interneuronas/fisiología
13.
Nat Commun ; 9(1): 3370, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135498

RESUMEN

Locomotion is a complex motor task generated by spinal circuits driving motoneurons in a precise sequence to control the timing and vigor of movements, but the underlying circuit logic remains to be understood. Here we reveal, in adult zebrafish, how the diversity and selective distribution of two V2a interneuron types within the locomotor network transform commands into an appropriate, task-dependent circuit organization. Bursting-type V2a interneurons with unidirectional axons predominantly target distal dendrites of slow motoneurons to provide potent, non-linear excitation involving NMDA-dependent potentiation. A second type, non-bursting V2a interneurons with bidirectional axons, predominantly target somata of fast motoneurons, providing weaker, non-potentiating excitation. Together, this ensures the rapid, first-order recruitment of the slow circuit, while reserving the fast circuit for highly salient stimuli involving synchronous inputs. Our results thus identify how interneuron diversity is captured and transformed into a parsimonious task-specific circuit design controlling the vigor of locomotion.


Asunto(s)
Interneuronas/citología , Interneuronas/fisiología , Locomoción/fisiología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Animales , Axones/fisiología , Sinapsis/fisiología , Pez Cebra
14.
Neuron ; 96(4): 730-735, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29144972

RESUMEN

Science is ideally suited to connect people from different cultures and thereby foster mutual understanding. To promote international life science collaboration, we have launched "The Science Bridge" initiative. Our current project focuses on partnership between Western and Middle Eastern neuroscience communities.


Asunto(s)
Cooperación Internacional , Neurociencias/historia , Europa (Continente) , Historia del Siglo XV , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos , Medio Oriente
15.
J Neurosci ; 37(45): 10835-10841, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118212

RESUMEN

Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.


Asunto(s)
Interneuronas/fisiología , Locomoción/fisiología , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Animales , Humanos , Neuronas Motoras/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Médula Espinal/diagnóstico por imagen , Médula Espinal/crecimiento & desarrollo
16.
Elife ; 52016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27559611

RESUMEN

Flexibility in the bilateral coordination of muscle contraction underpins variable locomotor movements or gaits. While the locomotor rhythm is generated by ipsilateral excitatory interneurons, less is known about the commissural excitatory interneurons. Here we examined how the activity of the V0v interneurons - an important commissural neuronal class - varies with the locomotor speed in adult zebrafish. Although V0v interneurons are molecularly homogenous, their activity pattern during locomotion is not uniform. They consist of two distinct types dependent on whether they display rhythmicity or not during locomotion. The rhythmic V0v interneurons were further subdivided into three sub-classes engaged sequentially, first at slow then intermediate and finally fast locomotor speeds. Their order of recruitment is defined by scaling their synaptic current with their input resistance. Thus we uncover, in an adult vertebrate, a novel organizational principle for a key class of commissural interneurons and their recruitment pattern as a function of locomotor speed.

17.
Nature ; 529(7586): 399-402, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26760208

RESUMEN

Motor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish. These gap junctions mediate a retrograde analogue propagation of voltage fluctuations from motor neurons to control the synaptic release and recruitment of the upstream V2a interneurons that drive locomotion. Selective inhibition of motor neurons during ongoing locomotion de-recruits V2a interneurons and strongly influences locomotor circuit function. Rather than acting as separate units, gap junctions unite motor neurons and V2a interneurons into functional ensembles endowed with a retrograde analogue computation essential for locomotor rhythm generation. These results show that motor neurons are not a passive recipient of motor commands but an integral component of the neural circuits responsible for motor behaviour.


Asunto(s)
Uniones Comunicantes/metabolismo , Locomoción/fisiología , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Pez Cebra , Animales , Femenino , Interneuronas/citología , Interneuronas/fisiología , Masculino , Modelos Neurológicos , Optogenética , Sinapsis/metabolismo , Transmisión Sináptica , Pez Cebra/fisiología
18.
Curr Biol ; 25(20): 2610-20, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26412127

RESUMEN

Animals constantly make behavioral choices to facilitate moving efficiently through their environment. When faced with a threat, animals make decisions in the midst of other ongoing behaviors through a context-dependent integration of sensory stimuli. In vertebrates, the mechanisms underlying behavioral selection are poorly understood. Here, we show that ongoing swimming in zebrafish is suppressed by escape. The selection of escape over swimming is mediated by switching between two distinct motoneuron pools. A hardwired circuit mediates this switch by acting as a clutch-like mechanism to disengage the swimming motoneuron pool and engage the escape motoneuron pool. Threshold for escape initiation is lowered and swimming suppression is prolonged by endocannabinoid neuromodulation. Thus, our results reveal a novel cellular mechanism involving a hardwired circuit supplemented with endocannabinoids acting as a clutch-like mechanism to engage/disengage distinct motor pools to ensure behavioral selection and a smooth execution of motor action sequences in a vertebrate system.


Asunto(s)
Conducta de Elección , Endocannabinoides/metabolismo , Reacción de Fuga , Neuronas Motoras/fisiología , Natación , Pez Cebra/fisiología , Potenciales de Acción , Animales
19.
Curr Biol ; 25(16): R721-2, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26294186

RESUMEN

A recent study has identified a command interneuron that controls the motor sequence for searching behavior in stick insect. The findings have implications for context-dependent behavioral selection.


Asunto(s)
Extremidades/fisiología , Insectos/fisiología , Animales
20.
Nat Neurosci ; 18(5): 628-30, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25849985

RESUMEN

The myelination of axons by oligodendrocytes markedly affects CNS function, but how this is regulated by neuronal activity in vivo is not known. We found that blocking synaptic vesicle release impaired CNS myelination by reducing the number of myelin sheaths made by individual oligodendrocytes during their short period of formation. We also found that stimulating neuronal activity increased myelin sheath formation by individual oligodendrocytes. These data indicate that neuronal activity regulates the myelinating capacity of single oligodendrocytes.


Asunto(s)
Vaina de Mielina/fisiología , Neuronas/fisiología , Oligodendroglía/citología , Vesículas Sinápticas/metabolismo , Animales , Recuento de Células , Quimera , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Vaina de Mielina/efectos de los fármacos , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Pentilenotetrazol/farmacología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Toxina Tetánica/farmacología , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...