Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673140

RESUMEN

The beneficial effects of lanthanide incorporation into 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (BNT-BT) matrix on its functional properties were investigated. The conventional solid-state method was used for synthesizing samples. The structural refinement revealed that all samples crystallized in R3c rhombohedral symmetry. Raman spectroscopy study was carried out using green laser excitation and revealed that no clear perceptible variation in frequency is observed. Dielectric measurements unveiled that the introduction of rare earth obstructed the depolarization temperature promoted in BNT-BT, the diffusive phase transition decreasing with increasing lanthanide size. Only dysprosium addition showed comparable diffusion constant and dielectric behavior as the unmodified composition. Further, the comparison of the obtained ferroelectric hysteresis and strain-electric field loops revealed that only Dy-phase exhibited interesting properties comparing parent composition. In addition, the incorporation of lanthanides Ln3+ into the BNT-BT matrix led to the development of luminescence characteristics in the visible and near infrared regions, depending on the excitation wavelengths. The simultaneous occurrence of photoluminescence and ferroelectric/piezoelectric properties opens up possibilities for BNT-BT-Ln to exhibit multifunctionality in a wide range of applications.

2.
Dalton Trans ; 53(4): 1630-1639, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38167910

RESUMEN

A novel phosphate containing barium, cobalt, and iron was synthesized in single-crystal and polycrystalline forms. Single crystal-based X-ray measurements revealed that it crystallizes in the monoclinic system with the P21/c space group. The structure is made up of linkages between FeO6 octahedra, CoO4 square planar units, CoO5 square pyramidal units, and PO4 tetrahedra through edges and/or vertices. The interconnection of these polyhedra leads to a three-dimensional framework with tunnels along the a-axis where the Ba2+ cations are located. The polycrystalline form was prepared via the sol-gel method and its XRD pattern was refined by the Le Bail method. Morphological and elemental mapping analyses of this phosphate were performed by scanning electron microscopy. In addition, infrared and Raman spectroscopy provided more insights into chemical bonding. The magnetic behavior was antiferromagnetic below TN ∼ 20 K. Optical measurements revealed a direct bandgap with an energy Eg of 2.83 eV.

3.
Materials (Basel) ; 16(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068136

RESUMEN

The effect of ferromagnetic CaMnO3 (CMO) addition to structural, magnetic, dielectric, and ferroelectric properties of BiFeO3 is presented. X-ray diffraction and Raman investigation allowed the identification of a single pseudocubic perovskite structure. The magnetic measurement showed that the prepared films exhibit a ferromagnetic behavior at a low temperature with both coercive field and remnant magnetization increased with increasing CMO content. However, a deterioration of magnetization was observed at room temperature. Ferroelectric study revealed an antiferroelectric-like behavior with a pinched P-E hysteresis loop for 5% CMO doping BFO, resulting in low remnant polarization and double hysteresis loops. Whereas, high remnant polarization and coercive field with a likely square hysteresis loop are obtained for 10% CMO addition. Furthermore, a bipolar resistive switching behavior with a threshold voltage of about 1.8 V is observed for high doped film that can be linked to the ferroelectric polarization switching.

4.
Nanomaterials (Basel) ; 13(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37947708

RESUMEN

Aiming to improve the photocatalytic properties of transition metal perovskites to be used as robust photoanodes, [LaFeO3]1-x/[SrTiO3]x nanocomposites (LFO1-x/STOx) are considered. This hybrid structure combines good semiconducting properties and an interesting intrinsic remanent polarization. All the studied samples were fabricated using a solid-state method followed by high-energy ball milling, and they were subsequently deposited by spray coating. The synthesized compounds were demonstrated to possess orthorhombic (Pnma) and cubic (Pm3¯m) structures for LFO and STO, respectively, with an average grain size of 55-70 nm. The LFO1-x/STOx nanocomposites appeared to exhibit high visible light absorption, corresponding to band gaps of 2.17-3.21 eV. Our findings show that LFO0.5/STO0.5 is the optimized heterostructure; it achieved a high photocurrent density of 11 µA/cm2 at 1.23 V bias vs. RHE and an applied bias photo-to-current efficiency of 4.1 × 10-3% at 0.76 V vs. RHE, as demonstrated by the photoelectrochemical measurements. These results underline the role of the two phases intermixing LFO and STO at the appropriate content to yield a high-performing photoanode ascribed to efficient charge separation and transfer. This suggests that LFO0.5/STO0.5 could be a potential candidate for the development of efficient photoanodes for hydrogen generation via photoelectrocatalytic water splitting.

5.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37893278

RESUMEN

The purpose of this research work was to synthesis bioderived nanocomposite films by incorporating Na0.5Bi0.5TiO3 (NBTO) nanoparticles into a chitosan matrix. The NBTO nanoparticles were synthesized using a traditional solid-state technique. Then, through a solution-casting approach, flexible composite films were fabricated using chitosan polymer. The study presents a range of compelling findings. For structural and morphological insights, scanning electron microscopy (SEM) reveals a fascinating morphology where NBTO nanoparticles are uniformly dispersed and interlocked with other particles, forming interconnected grains with significant interspaces within the chitosan matrix. For the optical properties, the spectral response within the 300-800 nm range is primarily governed by light scattering attributed to NBTO particles with diameter sizes ranging from 100 to 400 nm, as well as the distinctive bandgap exhibited by the NBTO phase. The investigation of dielectric properties demonstrates that composite films exhibit markedly higher dielectric values in comparison to pure chitosan films. It is noteworthy that an increase in the NBTO content results in a corresponding increase in dielectric values, enhancing the versatility of these materials. Local piezoelectric measurements utilizing piezoresponse force microscopy confirm the expected piezoelectric and ferroelectric behavior of NBTO particles when dispersed within the chitosan matrix. This research introduces a novel class of biocompatible nanocomposite materials, combining impressive structural attributes, enhanced dielectric properties, and piezoelectric capabilities. The outcomes of this study hold substantial promise for advanced applications in opto- and piezoelectric technologies, marking a significant advancement in biologically sourced materials with multifunctional properties.

6.
RSC Adv ; 13(37): 26041-26049, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37664189

RESUMEN

In the most recent electronic and electric sectors, ceramic-polymer nanocomposites with high dielectric permittivity and energy density are gaining popularity. However, the main obstacle to improving the energy density in flexible nanocomposites, besides the size and morphology of the ceramic filler, is the low interfacial compatibility between the ceramic and the polymer. This paper presents an alternative solution to improve the dielectric permittivity and energy storage properties for electronic applications. Here, the poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix is filled with surface-modified BaTi0.89Sn0.11O3/polydopamine nanoparticles (BTS11) nanoparticles, which is known for exhibiting multiphase transitions and reaching a maximum dielectric permittivity at room temperature. BTS11 nanoparticles were synthesized by a sol-gel/hydrothermal method at 180 °C and then functionalized by polydopamine (PDA). As a result, the nanocomposites exhibit dielectric permittivity (εr) of 46 and a low loss tangent (tan δ) of 0.017 at 1 kHz at a relatively low weight fraction of 20 wt% of BTS11@PDA. This is approximately 5 times higher than the pure PVDF-HFP polymer and advantageous for energy storage density in nanocomposites. The recovered energy storage for our composites reaches 134 mJ cm-3 at an electric field of 450 kV cm-1 with a high efficiency of 73%. Incorporating PDA-modified BTS11 particles into the PVDF-HFP matrix demonstrates highly piezo-active regions associated with BTS11 particles, significantly enhancing functional properties in the polymer nanocomposites.

7.
Nanoscale Adv ; 5(3): 869-878, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36756517

RESUMEN

The potential use of down-sized BFO-xSTO systems (x ≤ 25%) as highly efficient photoanodes for photocatalytic water splitting is investigated. BFO-xSTO is prepared by a solid-state method and subsequently deposited by spray coating. The compounds possess rhombohedral symmetry for x ≤ 15% and phase coexistence for x > 15%, as demonstrated by Raman spectroscopy and transmission electron microscopy. Our findings revealed a drastic grain size decrease with increasing STO content, namely 260 nm for BFO to 50 nm for BFO with 25% STO. Moreover, BFO-xSTO, x > 10% exhibited high optical absorption (> 80%) in the full spectrum and interestingly a very promising band alignment with water redox potentials. Moreover, the photochemical measurements revealed a photocurrent density of ∼0.17 µA cm-2 achieved for x = 15% at 0 bias. Using DFT calculations, the substitution effects on the electronic, optical, and photocatalytic performances of the BFO system were investigated and quantified. Surprisingly, a high hydrogen yield (∼191 µmol g-1) was achieved by BFO-12.5%STO compared to 1 µmol g-1 and 57 µmol g-1 for BFO and STO, respectively. This result highlights the beneficial effects of both the downsizing and substitution of BFO on the photocatalytic water splitting and hydrogen production performances of Bi1-x Sr x Fe1-x Ti x O3 systems.

8.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38202506

RESUMEN

Owing to their remarkable success in photocatalytic applications, multiferroic BiFeO3 and its derivatives have gained a highly promising position as electrode materials for future developments of efficient catalysts. In addition to their appropriate band gaps, these materials exhibit inherent intrinsic polarizations enabling efficient charge carrier separation and their high mobility without the need for additional co-catalysts. Here, we review the existing strategies for enhancing the photocatalytic performances of BiFeO3-based materials and we describe the physico-chemical properties at the origin of their exceptional photocatalytic behavior. A special focus is paid to the degradation of organic pollutants and water splitting, both driven through photocatalysis to unveil the correlation between BiFeO3 size, substitution, and doping on the one hand and the photocatalytic performances on the other hand. Finally, we provide practical recommendations for future developments of high-performing BiFeO3-based electrodes.

9.
Nanoscale Adv ; 4(21): 4658-4668, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36341296

RESUMEN

Mechanical energy harvesting using piezoelectric nanogenerators (PNGs) offers an attractive solution for driving low-power portable devices and self-powered electronic systems. Here, we designed an eco-friendly and flexible piezocomposite nanogenerator (c-PNG) based on H2(Zr0.1Ti0.9)3O7 nanowires (HZTO-nw) and Ba0.85Ca0.15Zr0.10Ti0.90O3 multipods (BCZT-mp) as fillers and polylactic acid (PLA) as a biodegradable polymer matrix. The effects of the applied stress amplitude, frequency and pressing duration on the electric outputs in the piezocomposite nanogenerator (c-PNG) device were investigated by simultaneous recording of the mechanical input and the electrical outputs. The fabricated c-PNG shows a maximum output voltage, current and volumetric power density of 11.5 V, 0.6 µA and 9.2 mW cm-3, respectively, under cyclic finger imparting. A high-pressure sensitivity of 0.86 V kPa-1 (equivalent to 3.6 V N-1) and fast response time of 45 ms were obtained in the dynamic pressure sensing. Besides this, the c-PNG demonstrates high-stability and durability of the electrical outputs for around three months, and can drive commercial electronics (charging capacitor, glowing light-emitting diodes and powering a calculator). Multi-physics simulations indicate that the presence of BCZT-mp is crucial in enhancing the piezoelectric response of the c-PNG. Accordingly, this work reveals that combining 1D and 3D fillers in a polymer composite-based PNG could be beneficial in improving the mechanical energy harvesting performances in flexible piezoelectric nanogenerators for application in electronic skin and wearable devices.

10.
Materials (Basel) ; 15(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955158

RESUMEN

Ferroelectric property that induces electrocaloric effect was investigated in Ba(GexTi1-x)O3 ceramics, known as BTGx. X-ray diffraction analysis shows pure perovskite phases in tetragonal symmetry compatible with the P4mm (No. 99) space group. Dielectric permittivity exhibits first-order ferroelectric-paraelectric phase transition, confirmed by specific heat measurements, similar to that observed in BaTiO3 (BTO) crystal. Curie temperature varies weakly as a function of Ge-content. Using the direct and indirect method, we confirmed that the adiabatic temperature change ΔT reached its higher value of 0.9 K under 8 kV/cm for the composition BTG6, corresponding to an electrocaloric responsivity ΔT/ΔE of 1.13 × 10-6 K.m/V. Such electrocaloric responsivity significantly exceeds those obtained so far in other barium titanate-based lead-free electrocaloric ceramic materials. Energy storage investigations show promising results: stored energy density of ~17 mJ/cm3 and an energy efficiency of ~88% in the composition BTG5. These results classify the studied materials as candidates for cooling devices and energy storage applications.

11.
Nanomaterials (Basel) ; 12(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35683769

RESUMEN

Tungsten disulfide nanosheets were successfully prepared by one-step chemical vapor deposition using tungsten oxide and thiourea in an inert gas environment. The size of the obtained nanosheets was subsequently reduced down to below 20 nm in width and 150 nm in length using high-energy ball milling, followed by 0.5 and 1 wt% graphene loading. The corresponding vibrational and structural characterizations are consistent with the fabrication of a pure WS2 structure for neat sampling and the presence of the graphene characteristic vibration modes in graphene@WS2 compounds. Additional morphological and crystal structures were examined and confirmed by high-resolution electron microscopy. Subsequently, the investigations of the optical properties evidenced the high optical absorption (98%) and lower band gap (1.75 eV) for the graphene@WS2 compared to the other samples, with good band-edge alignment to water-splitting reaction. In addition, the photoelectrochemical measurements revealed that the graphene@WS2 (1 wt%) exhibits an excellent photocurrent density (95 µA/cm2 at 1.23 V bias) compared with RHE and higher applied bias potential efficiency under standard simulated solar illumination AM1.5G. Precisely, graphene@WS2 (1 wt%) exhibits 3.3 times higher performance compared to pristine WS2 and higher charge transfer ability, as measured by electrical impedance spectroscopy, suggesting its potential use as an efficient photoanode for hydrogen evolution reaction.

12.
Nanomaterials (Basel) ; 13(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36615933

RESUMEN

Layered transition metals dichalcogenides such as MoS2 and WS2 have shown a tunable bandgap, making them highly desirable for optoelectronic applications. Here, we report on one-step chemical vapor deposited MoS2, WS2 and MoxW1-xS2 heterostructures incorporated into photoconductive devices to be examined and compared in view of their use as potential photodetectors. Vertically aligned MoS2 nanosheets and horizontally stacked WS2 layers, and their heterostructure form MoxW1-xS2, exhibit direct and indirect bandgap, respectively. To analyze these structures, various characterization methods were used to elucidate their properties including Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectrometry and high-resolution transmission electron microscopy. While all the investigated samples show a photoresponse in a broad wavelength range between 400 nm and 700 nm, the vertical MoS2 nanosheets sample exhibits the highest performances at a low bias voltage of 5 V. Our findings demonstrate a responsivity and a specific detectivity of 47.4 mA W-1 and 1.4 × 1011 Jones, respectively, achieved by MoxW1-xS2. This study offers insights into the use of a facile elaboration technique for tuning the performance of MoxW1-xS2 heterostructure-based photodetectors.

13.
Materials (Basel) ; 14(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198592

RESUMEN

In the surge of recent successes of 2D materials following the rise of graphene, molybdenum disulfide (2D-MoS2) has been attracting growing attention from both fundamental and applications viewpoints, owing to the combination of its unique nanoscale properties. For instance, the bandgap of 2D-MoS2, which changes from direct (in the bulk form) to indirect for ultrathin films (few layers), offers new prospects for various applications in optoelectronics. In this review, we present the latest scientific advances in the field of synthesis and characterization of 2D-MoS2 films while highlighting some of their applications in energy harvesting, gas sensing, and plasmonic devices. A survey of the physical and chemical processing routes of 2D-MoS2 is presented first, followed by a detailed description and listing of the most relevant characterization techniques used to study the MoS2 nanomaterial as well as theoretical simulations of its interesting optical properties. Finally, the challenges related to the synthesis of high quality and fairly controllable MoS2 thin films are discussed along with their integration into novel functional devices.

14.
RSC Adv ; 10(51): 30746-30755, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516015

RESUMEN

Ba0.85Ca0.15Zr0.10Ti0.90O3 (BCZT) relaxor ferroelectric ceramics exhibit enhanced energy storage and electrocaloric performances due to their excellent dielectric and ferroelectric properties. In this study, the temperature-dependence of the structural and dielectric properties, as well as the field and temperature-dependence of the energy storage and the electrocaloric properties in BCZT ceramics elaborated at low-temperature hydrothermal processing are investigated. X-ray diffraction and Raman spectroscopy results confirmed the ferroelectric-paraelectric phase transition in the BCZT ceramic. At room temperature and 1 kHz, the dielectric constant and dielectric loss reached 5000 and 0.029, respectively. The BCZT ceramic showed a large recovered energy density (W rec) of 414.1 mJ cm-3 at 380 K, with an energy efficiency of 78.6%, and high thermal-stability of W rec of 3.9% in the temperature range of 340-400 K. The electrocaloric effect in BCZT was explored via an indirect approach following the Maxwell relation at 60 kV cm-1. The significant electrocaloric temperature change of 1.479 K at 367 K, a broad temperature span of 87 K, an enhanced refrigerant capacity of 140.33 J kg-1, and a high coefficient of performance of 6.12 obtained at 60 kV cm-1 make BCZT ceramics potentially useful coolant materials in the development of future eco-friendly solid-state refrigeration technology.

15.
Acta Crystallogr C Struct Chem ; 75(Pt 6): 777-782, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166932

RESUMEN

The magnetic properties of a novel cobalt-based hydrogen vanadate, Co13.5(OH)6(H0.5VO3.5)2(VO4)6, are reported. This new magnetic material was synthesized in single-crystal form using a conventional hydrothermal method. Its crystal structure was determined from single-crystal X-ray diffraction data and was also characterized by scanning electron microscopy. Its crystal framework has a dumortierite-like structure consisting of large hexagonal and trigonal channels; the large hexagonal channels contain one-dimensional chains of face-sharing CoO6 octahedra linked to the framework by rings of VO4 tetrahedra, while the trigonal channels are occupied by chains of disordered V2O4 pyramidal groups. The magnetic properties of this material were investigated by DC magnetic measurements, which indicate the occurrence of antiferromagnetic interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...