Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(14): 1876-1879, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38273815

RESUMEN

Chemiresitive sensing allows the affordable and facile detection of small molecules such as H2O and CO2. Herein, we report a novel class of Earth-abundant post transition metal substituted Keggin polyoxometalates (POMs) for chemiresistive sensing applications, with conductivities up to 0.01 S cm-1 under 100% CO2 and 65% Relative Humidity (RH).

2.
Soft Matter ; 19(43): 8386-8402, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37873806

RESUMEN

We describe a simple coordination compound of Au(I) and 6-thioguanosine, [Au(6-tGH)2]Cl, that has a rich self-assembly chemistry. In aqueous solution, the discrete complex assembles into a supramolecular fibre and forms a luminescent hydrogel at concentrations above about 1 mM. Below this concentration, the macromolecular structure is a vesicle. Through appropriate control of the solvent polarity, the gel can be turned into a lamellar film or crystallised. The molecular structure of [Au(6-tGH)2]Cl was determined using single crystal X-ray diffraction, which showed bis-6-thioguanosine linearly coordinated through the thione moiety to a central Au(I) ion. In the vesicles, the photoluminescence spectrum shows a broad, weak band at 550 nm owing to aurophilic interactions. Co-operative self-assembly from vesicle to fibre is made possible through halogen hydrogen bonding interactions and the aurophilic interactions are lost, resulting in a strong photoluminescence band at 490 nm with vibronic structure typical of an intraligand transition. The vesicle-fibre transition is also revealed by a large increase of ellipticity in the circular dichroism spectrum with a prominent peak near 390 nm owing to the helical structure of the fibres. Atomic force microscopy shows that at the same time as fibres form, the sample gels. Imaging near the vesicle-fibre transition shows that the fibres form between vesicles and a mechanism for the transition based on vesicle collisions is proposed.

3.
Dalton Trans ; 52(17): 5545-5551, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37009664

RESUMEN

An RNA-based coordination polymer is formed by the aqueous reaction of CuI ions with the thionucleoside enantiomer (-)6-thioguanosine, (6tGH). The resulting polymer, [CuI(µ3-S-thioG)]n1, has a one-dimensional structure based on a [Cu4-S4] core and undergoes extensive hierarchical self-assembly transforming from oligomeric chains → rod → cable → bundle through which a fibrous gel forms, that undergoes syneresis to form a self-supporting mass. The assembly involves the formation of helical cables/bundles and, in combination with the intrinsic photoemission of the polymer, results in the material exhibiting circularly polarised luminescence (CPL).

4.
J Mater Chem C Mater ; 10(18): 7329-7335, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35706420

RESUMEN

The aqueous equimolar reaction of Ag(i) ions with the thionucleoside enantiomer (-)6-thioguanosine, ((-)6tGH), yields a one-dimensional coordination polymer {Ag(-)tG} n , the self-assembly of which generates left-handed helical chains. The resulting helicity induces an enhanced chiro-optical response compared to the parent ligand. DFT calculations indicate that this enhancement is due to delocalisation of the excited state along the helical chains, with 7 units being required to converge the calculated CD spectra. At concentrations ≥15 mmol l-1 reactions form a sample-spanning hydrogel which shows self-repair capabilities with instantaneous recovery in which the dynamic reversibility of the coordination chains appears to play a role. The resulting gel exhibits circularly polarised luminescence (CPL) with a large dissymmetry factor of -0.07 ± 0.01 at 735 nm, a phenomenon not previously observed for this class of coordination polymer.

5.
Chem Sci ; 11(24): 6222-6228, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32953017

RESUMEN

The bottom-up assembly of nanoelectronic devices from molecular building blocks is a target of widespread interest. Herein we demonstrate an in situ seeded growth approach to produce a nanowire-based electrical device. This exploits the chemisorption of block terpolymer-based seed fibres with a thiophene-functionalised corona onto metal electrodes as the initial step. We then use these surface-bound seeds to initiate the growth of well-defined one-dimensional fibre-like micelles via the seeded growth method known as "Living crystallisation-driven self-assembly'' and demonstrate that they are capable of spanning an interelectrode gap. Finally, a chemical oxidation step was used to transform the nanofibres into nanowires to generate a two-terminal device. This seeded growth approach of growing well-defined circuit elements provides a useful new design tool for bottom-up device fabrication.

6.
Chem Sci ; 10(11): 3186-3195, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30996900

RESUMEN

The silver-nucleoside complex [Ag(i)-(N3-cytidine)2], 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA. A combination of complementary hydrogen-bonding, hydrophobic and argentophilic interactions drive the formation of a double-helix with a continuous silver core. Electrical measurements on 1 show that despite having Ag···Ag distances within <5% of the metallic radii, the material is electrically insulating. This is due to the electronic structure which features a filled valence band, an empty conduction band dominated by the ligand, and a band gap of 2.5 eV. Hence, as-prepared, such Ag(i)-DNA systems should not be considered molecular nanowires but, at best, proto-wires. The structural features seen in 1 are essentially retained in the corresponding organogel which exhibits thixotropic self-healing that can be attributed to the reversible nature of the intermolecular interactions. Photo-reduced samples of the gel exhibit luminescence confirming that these poly-cytidine sequences appropriately pre-configure silver ions for the formation of quantum-confined metal clusters in line with contemporary views on DNA-templated clusters. Microscopy data reveals the resulting metal cluster/particles are approximately spherical and crystalline with lattice spacing (111) similar to bulk Ag.

7.
Biofouling ; 33(10): 892-903, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29083230

RESUMEN

Zwitterionic materials display antifouling promise, but their potential in marine anti-biofouling is still largely unexplored. This study evaluates the effectiveness of incorporating small quantities (0-20% on a molar basis) of zwitterions as sulfobetaine methacrylate (SBMA) or carboxybetaine methacrylate (CBMA) into lauryl methacrylate-based coatings whose relatively hydrophobic nature encourages adhesion of the diatom Navicula incerta, a common microfouling organism responsible for the formation of 'slime'. This approach allows potential enhancements in antifouling afforded by zwitterion incorporation to be easily quantified. The results suggest that the incorporation of CBMA does provide a relatively minor enhancement in fouling-release performance, in contrast to SBMA which does not display any enhancement. Studies with coatings incorporating mixtures of varying ratios of the cationic monomer [2-(methacryloyloxy)ethyl]trimethylammonium chloride and the anionic monomer (3-sulfopropyl)methacrylate, which offer a potentially lower cost approach to the incorporation of anionic and cationic charge, suggest these monomers impart little significant effect on biofouling.


Asunto(s)
Betaína/análogos & derivados , Incrustaciones Biológicas/prevención & control , Diatomeas/efectos de los fármacos , Metacrilatos/farmacología , Polímeros/farmacología , Betaína/química , Betaína/farmacología , Diatomeas/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polímeros/química , Propiedades de Superficie
8.
Nat Commun ; 8(1): 720, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959026

RESUMEN

Advances in bottom-up material design have been significantly progressed through DNA-based approaches. However, the routine integration of semiconducting properties, particularly long-range electrical conduction, into the basic topological motif of DNA remains challenging. Here, we demonstrate this with a coordination polymer derived from 6-thioguanosine (6-TG-H), a sulfur-containing analog of a natural nucleoside. The complexation reaction with Au(I) ions spontaneously assembles luminescent one-dimensional helical chains, characterized as {AuI(µ-6-TG)} n , extending many µm in length that are structurally analogous to natural DNA. Uniquely, for such a material, this gold-thiolate can be transformed into a wire-like conducting form by oxidative doping. We also show that this self-assembly reaction is compatible with a 6-TG-modified DNA duplex and provides a straightforward method by which to integrate semiconducting sequences, site-specifically, into the framework of DNA materials, transforming their properties in a fundamental and technologically useful manner.Integration of semiconducting properties into the basic topological motif of DNA remains challenging. Here, the authors show a coordination polymer derived from 6-thioguanosine that complexes with Au(I) ions to form a wire-like material that can also integrate semiconducting sequences into the framework of DNA materials.


Asunto(s)
ADN , Oro , Guanosina/análogos & derivados , Nanocables , Polímeros , Semiconductores , Tionucleósidos , Iones , Nanoestructuras
9.
Langmuir ; 33(35): 8829-8837, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28551995

RESUMEN

We show that sequential protein deposition is possible by photodeprotection of films formed from a tetraethylene-glycol functionalized nitrophenylethoxycarbonyl-protected aminopropyltriethoxysilane (NPEOC-APTES). Exposure to near-UV irradiation removes the protein-resistant protecting group, and allows protein adsorption onto the resulting aminated surface. The protein resistance was tested using proteins with fluorescent labels and microspectroscopy of two-component structures formed by micro- and nanopatterning and deposition of yellow and green fluorescent proteins (YFP/GFP). Nonspecific adsorption onto regions where the protecting group remained intact was negligible. Multiple component patterns were also formed by near-field methods. Because reading and writing can be decoupled in a near-field microscope, it is possible to carry out sequential patterning steps at a single location involving different proteins. Up to four different proteins were formed into geometric patterns using near-field lithography. Interferometric lithography facilitates the organization of proteins over square cm areas. Two-component patterns consisting of 150 nm streptavidin dots formed within an orthogonal grid of bars of GFP at a period of ca. 500 nm could just be resolved by fluorescence microscopy.


Asunto(s)
Nanotecnología , Adsorción , Microscopía de Fuerza Atómica , Proteínas , Siloxanos
10.
Inorg Chem ; 55(19): 9644-9652, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27631950

RESUMEN

A series of new two-dimensional coordination framework materials, based on Ag(I)-N bond formation, has been synthesized and structurally characterized by single crystal methods. Reactions between the poly-monodentate bridging ligand N,N'-((1r,4r)-cyclohexane-1,4-diyl)bis(1-(pyridin-3-yl)methanimine), L1, and silver salts yield compounds {[Ag(L1)(MeCN)](CF3SO3-)}n, 1, {[Ag(L1)(PF2O2-)]·H2O}n, 2, and {Ag2(L1)(tosylate)2}n, 3. The frameworks of these materials exhibit two distinct net topologies: 36.46.53 (1 and 2) and 44.62 (3). In all cases, L1 ligands are found to be fully saturated, in terms of metal ion binding, with both sets of pyridyl and imino N atoms involved, though in 1 and 2, crystallographically independent L1 moieties also display pyridyl-only binding. Either solvent (1) or the anion (2 and 3) acts as a terminal ligand to support interlayer interactions in the solid state. For 2 and 3 the molecular sheet orientation lies in the plane of the largest crystal face, indicating that crystal growth is preferentially driven by coordinate bond formation. Despite the relatively labile nature, typical of such Ag(I)-N bonds, solvent-based exfoliation of crystals of 3 was shown to provide dispersions of large, µm2, flakes which readily deposit on oxide surfaces as single-molecule sheets, as revealed by atomic force microscopy.

11.
Interface Focus ; 5(4): 20150005, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26464784

RESUMEN

We describe a facile approach for nanopatterning of photosynthetic light-harvesting complexes over macroscopic areas, and use optical spectroscopy to demonstrate retention of native properties by both site-specifically and non-specifically attached photosynthetic membrane proteins. A Lloyd's mirror dual-beam interferometer was used to expose self-assembled monolayers of amine-terminated alkylthiolates on gold to laser irradiation. Following exposure, photo-oxidized adsorbates were replaced by oligo(ethylene glycol) terminated thiols, and the remaining intact amine-functionalized regions were used for attachment of the major light-harvesting chlorophyll-protein complex from plants, LHCII. These amine patterns could be derivatized with nitrilotriacetic acid (NTA), so that polyhistidine-tagged bacteriochlorophyll-protein complexes from phototrophic bacteria could be attached with a defined surface orientation. By varying parameters such as the angle between the interfering beams and the laser irradiation dose, it was possible to vary the period and widths of NTA and amine-functionalized lines on the surfaces; periods varied from 1200 to 240 nm and linewidths as small as 60 nm (λ/4) were achieved. This level of control over the surface chemistry was reflected in the surface topology of the protein nanostructures imaged by atomic force microscopy; fluorescence imaging and spectral measurements demonstrated that the surface-attached proteins had retained their native functionality.

12.
ACS Nano ; 9(6): 6262-70, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26042335

RESUMEN

The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.


Asunto(s)
Nanoestructuras/química , Nanotecnología , Proteínas/análisis , Proteínas/química , Titanio/química
13.
J Mater Chem B ; 3(21): 4431-4438, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262787

RESUMEN

Thiol-based chemistry provides a mild and versatile tool for surface functionalization. In the present work, mercaptosilane films were patterned by utilizing UV-induced photo-oxidation of the thiol to yield sulfonate groups via contact and interferometric lithography (IL). These photo-generated sulfonic acid groups were used for selective immobilization of amino-functionalized molecules after activation with triphenylphosphine ditriflate (TPPDF). Moreover, protein-resistant poly(oligoethyleneglycolmethacrylate) (POEGMA) brushes were grown from the intact thiol groups by a surface-induced polymerization reaction. Exploiting both reactions it is possible to couple amino-labelled nitrilotriacetic acid (NH2-NTA) to sulfonate-functionalized regions, enabling the site-specific binding of green fluorescent protein (GFP) to regions defined lithographically, while exploiting the protein-resistant character of POEGMA brushes to prevent non-specific protein adsorption to previously masked areas. The outstanding reactivity of thiol groups paves the way towards novel strategies for the fabrication of complex protein nanopatterns beyond thiol-ene chemistry.

14.
ACS Nano ; 8(8): 7858-69, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25007208

RESUMEN

We describe a fast, simple method for the fabrication of reusable, robust gold nanostructures over macroscopic (cm(2)) areas. A wide range of nanostructure morphologies is accessible in a combinatorial fashion. Self-assembled monolayers of alkylthiolates on chromium-primed polycrystalline gold films are patterned using a Lloyd's mirror interferometer and etched using mercaptoethylamine in ethanol in a rapid process that does not require access to clean-room facilities. The use of a Cr adhesion layer facilitates the cleaning of specimens by immersion in piranha solution, enabling their repeated reuse without significant change in their absorbance spectra over two years. A library of 200 different nanostructures was prepared and found to exhibit a range of optical behavior. Annealing yielded structures with a uniformly high degree of crystallinity that exhibited strong plasmon bands. Using a combinatorial approach, correlations were established between the preannealing morphologies (determined by the fabrication conditions) and the postannealing optical properties that enabled specimens to be prepared "to order" with a selected localized surface plasmon resonance. The refractive index sensitivity of gold nanostructures formed in this way was found to correlate closely with measurements reported for structures fabricated by other methods. Strong enhancements were observed in the Raman spectra of tetra-tert-butyl-substituted phthalocyanine. The shift in the position of the plasmon band after site-specific attachment of histidine-tagged green fluorescent protein (His-GFP) and bacteriochlorophyll a was measured for a range of nanostructured films, enabling the rapid identification of the one that yielded the largest shift. This approach offers a simple route to the production of durable, reusable, macroscopic arrays of gold nanostructures with precisely controllable morphologies.


Asunto(s)
Oro/química , Interferometría , Nanoestructuras/química , Nanotecnología/métodos , Impresión , Cromo/química , Estudios de Factibilidad , Modelos Moleculares , Conformación Molecular , Fenómenos Ópticos , Resonancia por Plasmón de Superficie , Factores de Tiempo
15.
J Am Chem Soc ; 136(26): 9404-13, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24884533

RESUMEN

A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH.


Asunto(s)
Cisteína/química , Metacrilatos/química , Incrustaciones Biológicas , Adhesión Celular , Técnicas de Química Sintética , Proteínas Fluorescentes Verdes/química , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Metacrilatos/síntesis química , Microscopía de Fuerza Atómica , Nanoestructuras/química , Fotólisis , Silicio , Propiedades de Superficie , Rayos Ultravioleta
16.
Nanoscale ; 5(22): 11125-31, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24068243

RESUMEN

Nanoshaving, by tracing an atomic force microscope probe across a surface at elevated load, has been used to fabricate nanostructures in self-assembled monolayers of alkylphosphonates adsorbed at aluminium oxide surfaces. The simple process is implemented under ambient conditions. Because of the strong bond between the alkylphosphonates and the oxide surface, loads in excess of 400 nN are required to pattern the monolayer. Following patterning of octadecylphosphonate SAMs, adsorption of aminobutyl phosphonate yielded features as small as 39 nm. Shaving of monolayers of aryl azide-terminated alkylphosphonates, followed by attachment of polyethylene glycol to unmodified regions in a photochemical coupling reaction, yielded 102 nm trenches into which NeutrAvidin coated, dye-labelled, polymer nanospheres could be deposited, yielding bright fluorescence with little evidence of non-specific adsorption to other regions of the surface. Structures formed in alkylphosphonate films by nanoshaving were used to etch structures into the underlying metal. Because of the isotropic nature of the etch process, and the large grain size, some broadening was observed, but features 25-35 nm deep and 180 nm wide were fabricated.

17.
Biosens Bioelectron ; 41: 840-3, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22960009

RESUMEN

The synthesis of a bipodal diazonium salt, 3,5-bis(4-diazophenoxy)benzoic acid, and the study of its electrochemical deposition on gold surfaces is presented. The presence of the organic layer on the gold surface was characterized using atomic force microscopy and X-ray photoelectron spectroscopy, demonstrating the presence of phenyl groups, indicative of the grafted layer as well as the formation of multilayers, dependent on the electrografting conditions.


Asunto(s)
Compuestos de Diazonio/química , Galvanoplastia/métodos , Oro/química , Nanopartículas del Metal/química , Ensayo de Materiales , Microscopía de Fuerza Atómica , Propiedades de Superficie , Espectroscopía de Absorción de Rayos X
18.
Langmuir ; 29(4): 1083-92, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23244178

RESUMEN

A series of aryl azide terminated thiols and phosphonic acids has been synthesized, and used to prepare self-assembled monolayers on (respectively) gold and aluminum oxide surfaces. The rates of photoactivation were determined using contact angle measurement and X-ray photoelectron spectroscopy (XPS). The behavior of a diazirine functionalized aryl thiol was also studied. The rates of activation were found to be similar for all five adsorbates. However, the extent of photochemical coupling of a primary amine was significantly greater for the aryl azides than for the diazirine. A range of primary amines was successfully coupled to all of the azides with high yield. Little difference in reactivity was observed following perfluorination of the aromatic ring. Micrometer-scale patterns were fabricated by carrying out exposures of the aryl azide terminated SAMs through a mask submerged under a film of primary amine. Contrasting amines could be introduced to unreacted regions in a subsequent maskless step. A scanning near-field optical microscope was used to fabricate nanopatterns. Exposure of the azides to irradiation at 325 nm in air enabled selective deactivation of azides. The surrounding surface was functionalized with a primary amine in a maskless process; when a protein-resistant oligo(ethylene glycol) functionalized amine was used it was possible to produce protein nanopatterns, by adsorbing protein to features defined using near-field exposure.

19.
Biointerphases ; 7(1-4): 54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22949077

RESUMEN

Exposure of films formed by the adsorption of oligo(ethylene glycol) (OEG) functionalized trichlorosilanes on glass to UV light from a frequency-doubled argon ion laser (244 nm) causes photodegradation of the OEG chain. Although the rate of degradation is substantially slower than for monolayers of OEG terminated thiolates on gold, it is nevertheless possible to form micrometer-scale patterns by elective adsorption of streptavidin to exposed regions. A low density of aldehyde functional groups is produced, and this enables derivatization with nitrilotriacetic acid via an amine linker. Complexation with nickel enables the site-specific immobilization of histidine-tagged yellow and green fluorescent proteins. Nanometer-scale patterns may be fabricated using a Lloyd's mirror interferometer, with a sample and mirror set at right angles to each other. At low exposures, partial degradation of the OEG chains does not remove the protein-resistance of the surface, even though friction force microscopy reveals the formation of patterns. At an exposure of ca. 18 J cm(-2), the modified regions became adhesive to proteins in a narrow region ca. 30 nm (λ/8) wide. As the exposure is increased further the lines quickly broaden to ca. 90 nm. Adjustment of the angle between the sample and mirror enables the fabrication of lines of His-tagged green fluorescent protein at a period of 340 nm that could be resolved using a confocal microscope.


Asunto(s)
Adsorción , Vidrio/química , Análisis por Matrices de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo
20.
Nanoscale ; 3(6): 2511-6, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21431199

RESUMEN

We demonstrate that interferometric lithography offers a fast, simple route to nanostructured self-assembled monolayers of alkylphosphonates on the native oxide of titanium. Exposure at 244 nm using a Lloyd's mirror interferometer caused the spatially periodic photocatalytic degradation of the adsorbates, yielding nanopatterns that extended over square centimetre areas. Exposed regions were re-functionalised by a second, contrasting alkylphosphonate, and the resulting patterns were used as templates for the assembly of molecular nanostructures; we demonstrate the fabrication of lines of polymer nanoparticles 46 nm wide. Nanopatterned monolayers were also employed as resists for etching of the metal film. Wires were formed with widths that could be varied between 46 and 126 nm simply by changing the exposure time. Square arrays of Ti dots as small as 35 nm (λ/7) were fabricated using two orthogonal exposures followed by wet etching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...