Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Forensic Sci Int ; 254: 68-79, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26188700

RESUMEN

Document examination is an important forensic discipline and the legal system regularly needs the knowledge and skills of the scientific expert when questioned documents are involved in criminal or civil matters. Amongst the many aspects of the scientific examination of documents, elemental analysis can provide useful results. In this study, the evaluation of the analytical performance of a commercially available laser-induced breakdown spectroscopy (LIBS) instrument was conducted on office papers, writing inks, inkjet inks and laser printer toners. The paper sample set analysed consisted of 33 Australian paper specimens originating from the same production plant but representing different brands and/or batches. In addition, a total of 131 ink or toner samples were examined that included black and blue ballpoint inks, black inkjet inks, and black laser printer toners originating from several manufacturing sources, models and/or batches. Results from the LIBS method were compared against those obtained using more established elemental profiling method such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). LIBS demonstrated detectable and significant differences between different batches of the same brand as well as between different brands of paper, ink and toner samples. The LIBS method provided comparable discrimination powers for the selected sample sets when compared to those obtained using LA-ICP-MS (discrimination from 99.8 and 100% of the sample pairs, depending on the sample subset under examination). LIBS is a suitable technique for the determination of elemental composition as part of a protocol for the examination of questioned documents.

2.
Forensic Sci Int ; 251: 95-106, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25898182

RESUMEN

Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (µXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, µXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients.


Asunto(s)
Cannabis/química , Suelo/química , Ciencias Forenses , Rayos Láser , Espectrometría de Masas , Análisis de Componente Principal , Espectrometría por Rayos X , Análisis Espectral
3.
Forensic Sci Int ; 241: 46-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24866866

RESUMEN

A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (µXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and µXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and µXRF options for the routine forensic analysis of window glass samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA