Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(28): 30963-30974, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035889

RESUMEN

Herein, we introduce an innovative nanohybrid material for advanced wastewater treatment, composed of Corchorus olitorius-derived biochar and bismuth oxychloride (Biochar/Bi12O17Cl2), demonstrated in a solar photoreactor. This work focuses on the efficient degradation of linezolid (LIN), a persistent pharmaceutical pollutant, utilizing the unique (photo)catalytic capabilities of the nanohybrid. Compared with its individual components, the biochar/Bi12O17Cl2 hybrid exhibits a remarkable degradation efficiency of 82.6% for LIN, alongside significant chemical oxygen demand (COD) and total organic carbon (TOC) mineralization rates of 81.3 and 75.8%, respectively. These results were achieved within 3 h under solar irradiation, using an optimal composite dose of 125 mg/L at pH 4.3 ± 0.45, with an initial COD and LIN concentrations of 1605 and 160.8 mg/L and TOC of 594.3 mg/L. The nanohybrid's stability across five cycles of use demonstrates its potential for repeated applications, with degradation efficiencies of 82.6 and 77.9% in the first and fifth cycles, respectively. This indicates the biochar/Bi12O17Cl2 composite's suitability as a sustainable and cost-effective solution for the remediation of heavily contaminated waters. Further, the degradation pathway proposed the degradation of all of the generated intermediates to a single-ring compound. Contributing to the development of next-generation materials for environmental remediation, this research underscores the critical role of nanotechnology in enhancing water quality and ecosystem sustainability and addressing the global imperative for clean water access and environmental preservation.

2.
Nanomaterials (Basel) ; 14(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38869577

RESUMEN

Insulin-loaded nanofibers were prepared using chitosan as a natural polymer. The loaded insulin with polyethylene oxide was used for preparing monolayer batch S1. Nanofiber S1 was coated by seven layers of film on both sides to form batch S2 as a sandwich containing Layer A (CS, PEG and PEO) and Layer B (PEG and PEO) using electrospinning apparatus. SEM, TEM and FT-IR techniques were used to confirm the drug loading within the composite nanofibers. The in vitro activity that provided a sustained and controlled release of the drug from the nanofiber batch was studied at different pH values spectrophotometrically using a dialysis method. In batches S1 and S2, the release of insulin from nanofiber proceeds via burst release necessary to produce the desired therapeutic activity, followed by slow step. The rate and the percentage release of insulin in batch S2 are found to be higher at all pH values.

3.
Sci Rep ; 13(1): 13190, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580319

RESUMEN

Herein, a novel composite of Corchorus olitorius-derived biochar and Bi12O17Cl2 was fabricated and utilized for the degradation of tetracycline (TC) in a solar photo-oxidation reactor. The morphology, chemical composition, and interaction between the composite components were studied using various analyses. The biochar showed a TC removal of 52.7% and COD mineralization of 59.6% using 150 mg/L of the biochar at a pH of 4.7 ± 0.5, initial TC concentration of 163 mg/L, and initial COD of 1244 mg/L. The degradation efficiency of TC increased to 63% and the mineralization ratio to 64.7% using 150 mg/L of bare Bi12O17Cl2 at a pH of 4.7 ± 0.5, initial TC concentration of 178 mg/L, and COD of 1034 mg/L. In the case of biochar/Bi12O17Cl2 composite, the degradation efficiency of TC and COD mineralization ratio improved to 85.8% and 77.7% due to the potential of biochar to accept electrons which retarded the recombination of electrons and holes. The synthesized composite exhibited high stability over four succeeding cycles. According to the generated intermediates, TC could be degraded to caprylic acid and pentanedioic acid via the frequent attack by the reactive species. The prepared composite is a promising photocatalyst and can be applied in large-scale systems due to its high degradation and mineralization performance in a short time besides its low cost and stability.


Asunto(s)
Antibacterianos , Corchorus , Antibacterianos/química , Aguas Residuales , Descontaminación , Tetraciclina/análisis , Luz , Catálisis
4.
Chemosphere ; 339: 139766, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562503

RESUMEN

The unprecedented recent expansion in usage of paracetamol (AAP) has increased the need for suitable wastewater treatment technology. Furthermore, direct interspecies electron transfer promotion (DIET) offers simple and efficient approach for enhancing anaerobic digestion (AD). In this work, using AAP-containing domestic wastewater as feed, control AD reactor (RC) was operated, besides three DIET-promoted AD reactors (REV, RMC and REVMC, referring to electrical voltage "EV"-applied, nFe3O4-multiwall carbon nanotube (MCNT)-supplemented, and "EV applied + MCNT supplemented" reactor, respectively). Maximal treatable organic loading rates by RC, REV, RMC and REVMC were 3.9, 3.9, 7.8 and 15.6 g COD/L/d, corresponding to AAP loading rate of 26, 78, 156 and 312 µg/L/d, respectively. Methane production rate generated by RC, REV, RMC and REVMC reached 0.80 ± 0.01, 0.86 ± 0.04, 1.40 ± 0.07, and 3.01 ± 0.17 L/L/d, respectively. AAP expectedly followed hydroquinone degradation pathway, causing AD failure by acetate accumulation. However, this performance deterioration could be mitigated by DIET-promoted microbes with higher methanogenic activity and advanced electric conductivity. Economic evaluation revealed the favourability of MCNT addition over EV application, since payback periods for RC, REV, RMC and REVMC were 6.2, 7.7, 4.2 and 5.0 yr, respectively.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Reactores Biológicos , Preparaciones Farmacéuticas , Metano
5.
BMC Chem ; 17(1): 55, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316928

RESUMEN

Ensuring healthy lives and promoting well-being for all at all ages is the third goal of the sustainable development plan, so it was necessary to identify the most important problems that threaten health in our world. The World Health Organization declared that antibiotic resistance is one of the uppermost global public health threats facing humanity and searching for new antibiotics is slow. This problem can be approached by improving available drugs to combat various bacterial threats. To circumvent bacterial resistance, three copper(II) complexes based on the pefloxacin drug were prepared and characterized using analytical, spectroscopic, and thermal techniques. The resulting data suggested the formation of one octahedral binary and two distorted square pyramidal ternary complexes. Fluorescence spectra results revealed the formation of a turn-on fluorophore for amino acid detection. Computational calculations investigated quantum and reactivity parameters. Molecular electrostatic potential profiles and noncovalent bond interaction-reduced density gradient analysis indicated the active sites on the complex surface. The complexes were subjected to six microbial species, where the octahedral binary complex provoked its antimicrobial potency in comparison with ternary complexes. The enhanced antimicrobial activity against gram-negative bacterium E-coli compared to gentamicin was exhibited by the three complexes. Docking simulation was performed based on the crystal structure of E. coli and S. pneumoniae receptors using 5I2D and 6O15 codes. The binary complex exhibited a potent fitness score with 5I2D (TBE = - 107 kcal/mol) while ternary complexes displayed the highest docked score of fitness with 6O15.

6.
RSC Adv ; 13(24): 16453-16470, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37274405

RESUMEN

Acetone is a dangerous material that poses a major risk to human health. To protect against its harmful impacts, a fluorescent biosensor 3-aminopropyl triethoxysilane capped ZnO quantum dots (APTES/ZnO QDs) was investigated to detect low concentrations of acetone. Numerous techniques, including Fourier transform infrared (FTIR), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), zeta potential, UV-vis absorption, and photoluminescence (PL), are used to thoroughly verify the successful synthesis of pristine ZnO QDs and APTES/ZnO QDs. The HRTEM micrograph showed that the average size distributions of ZnO QDs and APTES/ZnO QDs were spherical forms of 2.6 and 1.2 nm, respectively. This fluorescent probe dramatically increased its sensitivity toward acetone with a wide linear response range of 0.1-18 mM and a correlation coefficient (R2) of 0.9987. The detection limit of this sensing system for acetone is as low as 42 µM. The superior selectivity of acetone across numerous interfering bioanalytics is confirmed. Reproducibility and repeatability experiments presented relative standard deviations (RSD) of 2.2% and 2.4%, respectively. Finally, this developed sensor was applied successfully for detecting acetone in a diabetic patient's urine samples with a recovery percentage ranging from 97 to 102.7%.

7.
Front Chem ; 11: 1111558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817172

RESUMEN

Modified cellulose acetate membranes with bentonite clay (CA/bent) and TiO2 nanoparticles (CA/TiO2) using the phase inversion method are successfully prepared and characterized. These Membranes are favored due to their high salt rejection properties and recyclability. The IR and EDX spectral data indicate the formation of modified membranes. The Scan Electron Microscope micrographs show that the modified membranes have smaller particle sizes with higher porosity than the neat membrane. The average pore diameter is 0.31 µm for neat cellulose acetate membrane (CA) and decreases to 0.1 µm for CA/0.05bent. All modified membranes exhibit tensile strengths and elongation percentages more than the neat membrane. The higher tensile strength and the maximum elongation% are 15.3 N/cm2 and 11.78%, respectively, for CA/0.05bent. The thermogravimetric analysis of modified membranes shows higher thermal stability than the neat membrane. The modified membranes exhibit enhanced wettability and hydrophilicity compared with cellulose acetate, by measuring the contact angle which decreases from 60° (CA) to 40° (CA/0.1bent). The ultrafiltration tests indicated that the CA/bent and CA/TiO2 are better than CA. The most efficient nanocomposite membrane is CA/0.05bent with 100% removal of (BSA) from industrial water with a flux equal to 9.5 mL/min under an applied pressure of 20 bar. Thus, this study introduces a novel ultrafiltration membrane (CA/0.05bent) that can be used effectively to completely remove bovine serum albumin from contaminated water.

8.
Front Chem ; 11: 1115377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817174

RESUMEN

Carboxymethyl ß-cyclodextrin-nanochitosan-glutaraldehyde (CM-ßCD:nChi:Glu) terpolymer was prepared as a nano-adsorbent for the removal of the anionic textile dye, acid red 37. The terpolymer nanocomposite formation and characterization were clarified by FTIR, XRD, scanning electron microscopy, TEM, Brunauer-Emmett-Teller specific surface area (BET-SSA), and zeta potential. The removal of the textile dye was investigated by using the batch adsorption method, investigating the effect of pH, dye concentration, adsorbent dose, contact time, and temperature. The results revealed that the maximum removal efficiency of 102.2 mg/L of the dye is about 99.67% under pH 6.0, the optimal contact time is 5 min, and the adsorbent dosage is 0.5 g/L. At 29°C; the adsorption capacity increased from 81.29 to 332.60 mg/g when the initial concentration of the dye was increased from 40.97 to 212.20 mg/L. Adsorption kinetics fitted well with the pseudo-second-order model with a good correlation (R 2 = 0.9998). The Langmuir isotherm model can best describe the adsorption isotherm model. Based on the experimental results, the CM-ßCD:nChi:Glu terpolymer has a promising potential as an efficient novel adsorbent for the removal of textile dye acid red 37 from contaminated water. This study's preparation techniques and demonstrated mechanisms offer valuable insights into the adsorbent-adsorbate interactions mechanism, analysis, challenges, and future directions of beta-cyclodextrin/chitosan-based adsorbents in wastewater treatment.

9.
Int J Biol Macromol ; 234: 123719, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801217

RESUMEN

Two new crosslinked modified chitosan biopolymers, namely (CTS-VAN) and (Fe3O4@CTS-VAN) bioadsorbents were prepared starting from chitosan and 4-hydroxy-3-methoxybenzaldehyde (VAN) in presence of epichlorohydrin. The analytical techniques FT-IR, EDS, XRD, SEM and XPS besides BET surface analysis were utilized for full characterization of the bioadsorbents. Batch experiments were conducted to study the effect of various influencing parameters in Cr (VI) removal such as initial pH, contact time, adsorbent amount and initial Cr (VI) concentration. The adsorption of Cr (VI) was found out to be maximum at pH = 3 for both bioadsorbents. Langmuir isotherm fit well the adsorption process with a maximum adsorption capacity of 188.68 and 98.04 mg/g for CTS-VAN and Fe3O4@CTS-VAN, respectively. The adsorption process followed pseudo second-order kinetics with R2 values of 1 and 0.9938 for CTS-VAN and Fe3O4@CTS-VAN, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that Cr(III) accounted for 83 % of the total Cr bound to bioadsorbents surface, which indicated reductive adsorption was responsible for Cr(VI) removal by the bioadsorbents. Cr(VI) was initially adsorbed on the positively charged surface of the bioadsorbents and reduced to Cr(III) by electrons provided by oxygen-comprising functional groups (e.g., CO), and consequently part of the converted Cr(III) stayed on the surface and the rest released into solution.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Cromo/química , Agua/química , Adsorción , Cinética , Concentración de Iones de Hidrógeno
10.
Molecules ; 27(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35566339

RESUMEN

The two ligands 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)aniline (DMAT) and 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)phenol (DMOHT) were used to synthesize three heteroleptic Cu(II) complexes via a self-assembly technique. The structure of the newly synthesized complexes was characterized using elemental analysis, FTIR and X-ray photoelectron spectroscopy (XPS) to be [Cu(DMAT)(H2O)(NO3)]NO3.C2H5OH (1), [Cu(DMOT)(CH3COO)] (2) and [Cu(DMOT)(NO3)] (3). X-ray single-crystal structure of complex 1 revealed a hexa-coordinated Cu(II) ion with one DMAT as a neutral tridentate NNN-chelate, one bidentate nitrate group and one water molecule. In the case of complex 2, the Cu(II) is tetra-coordinated with one DMOT as an anionic tridentate NNO-chelate and one monodentate acetate group. The antimicrobial, antioxidant and anticancer activities of the studied compounds were examined. Complex 1 had the best anticancer activity against the lung carcinoma A-549 cell line (IC50 = 5.94 ± 0.58 µM) when compared to cis-platin (25.01 ±2.29 µM). The selectivity index (SI) of complex 1 was the highest (6.34) when compared with the free ligands (1.3-1.8), and complexes 2 (0.72) and 3 (2.97). The results suggested that, among those compounds studied, complex 1 is the most promising anticancer agent against the lung carcinoma A-549 cell line. In addition, complex 1 had the highest antioxidant activity (IC50 = 13.34 ± 0.58 µg/mL) which was found to be comparable to the standard ascorbic acid (IC50 = 10.62 ± 0.84 µg/mL). Additionally, complex 2 showedbroad-spectrum antimicrobial action against the microbes studied. The results revealed it to possess the strongest action of all the three complexes against B. subtilis. The MIC values found are 39.06, 39.06 and 78.125 µg/mL for complexes 1-3, respectively.


Asunto(s)
Antiinfecciosos , Carcinoma , Complejos de Coordinación , Antioxidantes/química , Complejos de Coordinación/química , Cobre/química , Cristalografía por Rayos X , Humanos , Ligandos , Bases de Schiff/química , Triazinas/farmacología , Rayos X
11.
J Hazard Mater ; 424(Pt A): 127395, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34879583

RESUMEN

The presence of 4-nitrophenol (4-NP) in the wastewater industry causes toxicity and inhibition of the anaerobic degrading bacteria. The anaerobes in the multistage anaerobic reactor were loaded by 30.0 mg/gVS Graphene nanoparticles (MAR-Gn) as an electron acceptor to detoxify wastewater industry. The half maximal inhibitory concentration (IC50) was reduced from 455 ± 22.5 to 135 ± 12.7 µg Gallic acid equivalent/mL at 4-NP loading rate of 47.9 g/m3d. Furthermore, 4-NP was decreased by a value of 83.7 ± 4.9% in MAR-Gn compared to 65.6 ± 4.8% in control MAR. The 4-aminophenol (4-AP) recovery was accounted for 44.8% in the MAR-Gn at an average oxidation-reduction potential (ORP) of - 167.3 ± 21.2 mV. The remaining portions of 4-NP and 4-AP in the MAR-Gn effluent were efficiently removed by baffled high rate algal pond (BHRAP), resulting in overall removal efficiency of 91.6 ± 6.3 and 92.3 ± 4.6%, respectively. The Methanosaeta (52.9%) and Methanosphaerula (10.9%) were dominant species in MAR-Gn for reduction of 4-NP into 4-AP. Moreover, Chlorophyta cells (Chlorella vulgaris, Scenedesmus obliquus, Scenedesmus quadricauda and Ulothrix subtilissima were abundant in the BHRAP for complete degradation of 4-NP and 4-AP.


Asunto(s)
Chlorella vulgaris , Grafito , Scenedesmus , Anaerobiosis , Reactores Biológicos , Nitrofenoles , Estanques , Eliminación de Residuos Líquidos , Aguas Residuales
12.
ACS Omega ; 6(20): 13077-13086, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34056457

RESUMEN

In this article, we investigate the application of polythiophene (PT), polythiophene with embedded gold nanoparticles (PT-Au), and polythiophene with embedded palladium nanoparticles (PT-Pd) via the spin coating technique on the rear contact of single-crystalline silicon solar cells. Several layers of coating (up to four layers) were applied, followed by a simple heat treatment at 70 °C for 30 min. The morphology, particles distribution in the polymer, and crystal structure of the colloid PT, PT-Au, and PT-Pd were characterized by transmission electron microscopy (TEM). Optical characteristics of the polymer and nanoparticles embedded in the polymers exhibited high absorption in the near-UV region, and a plasmonic peak at around 580 nm is observed. The calculated energy gap ranged from 2.65 eV (PT-Pd 5%) to 2.9 eV (PT) and 3.05 eV (PT-Au 5%). Scanning electron microscopy (SEM) images of the successive layers show an increase in the density and thickness of the PT particles with increasing number of coating layers, up to 12 µm for four layers of PT. Devices were characterized under dark conditions exhibiting variations in the ideality factor and series and shunt resistances with different coating layers. The silicon solar cells were characterized by measuring quantum efficiency, photoconversion efficiency (PCE), fill factor, and series and shunt resistances before and after coating. The coating was found to reduce the series resistance and to increase the efficiency of the cell by up to 7.25% for the PT-Au5% layers.

13.
Int J Biol Macromol ; 170: 768-779, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385450

RESUMEN

Modified biopolymer chitosan namely 2-hydroxy-1-naphthaldehyde chitosan (CTS-Nap) has been synthesized for the removal of toxic chromium from aqueous solutions. In an attempt to enhance the adsorption capacity of toxic chromium on the prepared modified biopolymer, magnetic Fe3O4 nanoparticles have been loaded on the modified adsorbent to form the magnetite adsorbent (Fe3O4@CTS-Nap). The adsorption mechanism of both adsorbents is explored by batch experiments, FT-IR, SEM, TEM, XRD, VSM, and EDS. The optimum adsorption is achieved at pH 1.5 for CTS-Nap and 1.0 for Fe3O4@CTS-Nap. Pseudo second order illustrated the best description for the adsorption process with correlation coefficient R2 = 0.999 and the film diffusion or chemisorption is the rate-limiting step. The equilibrium data is analyzed using five isotherm models, the experimental data agreed well with the Freundlich model with a maximum adsorption capacity of 78.12 mg g-1 and 57.14 mg g-1 for CTS-Nap and Fe3O4@CTS-Nap, respectively. However, this unexpected result revealed that the presence of magnetic nanoparticles does not always enhance the adsorption process and many other factors could control the adsorption process. Generally, these outcomes revealed that the unmagnetite modified adsorbent CTS-Nap have practical greater influence on wastewater treatment management rather than the magnetic modified chitosan Fe3O4@CTS-Nap.


Asunto(s)
Biopolímeros/química , Quitosano/química , Cromo/química , Nanopartículas de Magnetita/química , Adsorción , Cinética , Magnetismo/métodos , Agua/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
14.
Nanotechnology ; 31(50): 505716, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-32707572

RESUMEN

In this work we demonstrate enhancement in visible-light photocatalytic activity (PCA) of ZnO nanoparticles (NPs) with minimal attenuation of visible light transmittance. This approach can benefit numerous optoelectronic and photocatalytic applications. ZnO NPs were p-n co-doped with Al and Bi to improve Bi doping into the ZnO crystal. Al- and/or Bi-doped ZnO was coprecipitated by ammonia from aqueous nitrate solutions of Zn2+, Al3+, and Bi3+, followed by microwave heating. Doping concentrations in Al- and Bi- doped ZnO (AZO and BZO) and Al/Bi co-doped ZnO (ABZO) were 1, 3, 5, and 7 mole %. The resulting NPs were characterized by XRD, TEM, EDS, BET, and UV-visible absorption. While EDS shows that almost all added Bi was incorporated into the ZnO, XRD analysis of BZO reveals formation of α-Bi2O3 as a secondary phase due to the poor Bi solubility in ZnO. Co-doping of Al with Bi suppressed α-Bi2O3 formation and increased Bi solubility in ZnO. XRD-based calculations of the lattice constants and deformation strain, stress, and energy all show insertion of Al and/or Bi into the crystal with different extents according to the dopants' solubilities into ZnO. AZO and BZO NPs had E g lowered by 0.05-1.39 eV and 0.30-0.70 eV, respectively, relative to ZnO. On the other hand, ABZO had E g reductions of only 0.01-0.20 eV due to formation of acceptor-donor complex through co-doping. ABZO gave higher PCA enhancements with respect to E g reductions (Δk photo/-ΔE g) than either AZO and BZO, with values up to 370, 126, and 13 min-1 eV-1, respectively.

15.
Bioresour Technol ; 231: 9-18, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28189089

RESUMEN

The effect of cultural growth treating gelatinaceous wastewater on hydrogen fermentative was assessed using up-flow multi-stage anaerobic sponge reactor (UMASR) and anaerobic sequencing batch reactor (AnSBR). Both reactors were operated at five hydraulic retention times (HRTs). UMASR achieved the maximum COD removal efficiency of 60.2±4.4% at HRT of 48h. Moreover, UMASR exhibited superiority in the course of carbohydrates and proteins removal efficiencies' of 100 and 52.5±2.4% due to high amylase and protease activities' of 4.1±0.3 and 0.032±0.002U, respectively. Contrariwise, AnSBR assigned for the peak hydrogen production rate of 1.17±0.14L/L/day at HRT of 24-h. Lipase activity was quite high (0.307±0.023U) in AnSBR resulting in removal efficiency of 35.2±2.1% for lipids. Stover-Kincannon model emphasized that UMASR required lesser volume than AnSBR to sustain the same substrate degradation efficacy. Nevertheless, the net gain energy harvested from AnSBR surpassed UMASR by 4.0-folds at HRT of 24-h.


Asunto(s)
Bacterias Anaerobias/crecimiento & desarrollo , Hidrógeno/metabolismo , Aguas Residuales/microbiología , Anaerobiosis , Técnicas de Cultivo Celular por Lotes , Biodegradación Ambiental , Biomasa , Reactores Biológicos/microbiología , Carbohidratos/aislamiento & purificación , Ácidos Grasos Volátiles/análisis , Fermentación , Concentración de Iones de Hidrógeno , Cinética , Lípidos/aislamiento & purificación , Metaboloma , Modelos Teóricos , Proteínas/aislamiento & purificación , Factores de Tiempo
16.
Bioresour Technol ; 216: 520-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27268437

RESUMEN

The effect of substrate to inoculum (So/Xo) ratio and supplementation of magnetite/graphene oxide (MGO) nano-composite material on hydrogen production from gelatinaceous wastewater via dark fermentation process was investigated. Results demonstrated that optimum So/Xo ratio of 1.0gCOD/gVSS achieved maximal hydrogen yield (HY) of 79.2±11.9mL H2/gCOD removed. Supplementation of anaerobes with 100mg/L MGO promoted HY up to 112.4±10.5mL H2/gCOD removed. Moreover, the degradation efficiency of carbohydrates, proteins and lipids was improved to 80.8±7.6, 34.4±2.3 and 31.4±2.2%, respectively. Acetate (HAc) and butyrate (HBu) concentrations increased from 102±6.8 to 125.3±6.3 and from 31.1±1.5 to 48.8±3.5mg/gVSS, respectively. However, propionate (HPr) concentration dropped from 35.9±2.7 to 15±1.3mg/gVSS. Hydrogenase enzyme activity increased 9-folds and the anaerobes elongated from ca. 1.8-2.9 to ca. 2.5-5.1µm with MGO addition. Moreover, Proteobacteria, Firmicutes, Clostridia and Bacilli were detected with the batches supplemented with MGO.


Asunto(s)
Biocombustibles , Óxido Ferrosoférrico/química , Grafito/química , Hidrógeno/metabolismo , Nanocompuestos/química , Aguas Residuales/química , Acetatos/metabolismo , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Butiratos/metabolismo , Metabolismo de los Hidratos de Carbono , Fermentación , Óxido Ferrosoférrico/metabolismo , Grafito/metabolismo , Metabolismo de los Lípidos , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Óxidos/química , Óxidos/metabolismo , Proteínas/metabolismo , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos
17.
Bioinorg Chem Appl ; : 479897, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18364993

RESUMEN

A new series of Zn(2+), Cu(2+), Ni(2+), and Co(2+) complexes of N(1)-methyl-2-(1H-1,2,3-benzotriazol-1-yl)-3-oxobutanethioamide (MBOBT), HL, has been synthesized and characterized by different spectral and magnetic measurements and elemental analysis. IR spectral data indicates that (MBOBT) exists only in the thione form in the solid state while 13C NMR spectrum indicates its existence in thione and thiole tautomeric forms. The IR spectra of all complexes indicate that (MBOBT) acts as a monobasic bidentate ligand coordinating to the metal(II) ions via the keto-oxygen and thiolato-sulphur atoms. The electronic spectral studies showed that (MBOBT) bonded to all metal ions through sulphur and nitrogen atoms based on the positions and intensity of their charge transfer bands. Furthermore, the spectra reflect four coordinate tetrahedral zinc(II), tetragonally distorted copper(II), square planar nickel(II), and cobalt(II) complexes. Thermal decomposition study of the complexes was monitored by TG and DTG analyses under N(2) atmosphere. The decomposition course and steps were analyzed and the activation parameters of the nonisothermal decomposition are determined. The isolated metal chelates have been screened for their antimicrobial activities and the findings have been reported and discussed in relation to their structures.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 67(3-4): 1072-9, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17142091

RESUMEN

A new series of iron(III) complexes are synthesized from the reaction of the polyfunctional ligands 1-benzotriazol-1-yl-1-[p-X-phenyl]hydrazono]propan-2-one (X=H, Cl, NO(2), CH(3) or OCH(3) corresponding to HL(1),HL(2), HL(3), HL(4) or HL(5), respectively, with iron(III) chloride in the presence of LiOH by the conventional and microwave induced energy methods. The conventional method led to the formation of [FeL(3)].nH(2)O but the microwave induced energy gave [FeLCl(2)], n=1-3 and L is the anion of HL(1)-HL(5). The complexes are characterized by the elemental analysis, molar conductivity, magnetic and spectral (FT-IR, UV-vis and ESR) studies. The magnetic and spectral studies showed that [FeLCl(2)] are polymeric octahedral, [Fe(L(1))(3)].H(2)O is a low spin octahedral and (d(xz),d(yz))(4) (d(xy))(1) ground state, [FeL(3)].nH(2)O, L=anion of HL(4) or HL(5) and are octahedral with intermediate spin (S=32) with ground state (d(xy))(2)(d(xz),d(yz))(3) electronic configuration while for the anions of HL(2) and HL(3), they have (t(2g))(3)(e(g))(5) admixed with (d(xy))(2)(d(xz),d(yz))(3) configurations. From the ESR data, the contribution of the high spin (S=52) and low spin (S=32) to the quantum mechanical spin intermediate (QMS), and the crystal field parameters Delta and V are calculated and related to the electronic and steric effects of the ligands. The electronic spectral data confirm that obtained from the ESR, and the different ligand field parameters as well as the pi-->t(2g), t(2g)-->e(g), e(g)-->pi*, pi-->pi* transitions are estimated and compared with that experimentally obtained.


Asunto(s)
Hidrazonas/química , Hierro/química , Propano/química , Espectrofotometría , Triazoles/química , Carbono/química , Conductividad Eléctrica , Microanálisis por Sonda Electrónica , Espectroscopía de Resonancia por Spin del Electrón , Hidrógeno/química , Ligandos , Compuestos de Litio/química , Magnetismo , Microondas , Estructura Molecular , Nitrógeno/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
19.
Artículo en Inglés | MEDLINE | ID: mdl-16458056

RESUMEN

The reaction of NiCl(2).H(2)O with 1-benzotriazol-1-yl-[(p-X-phenyl)hydrazone]propan-2-one, X=H (HL(1)), X=Cl (HL(2)), X=Br (HL(3)) and X=Me (HL(4)), gave the complexes [(HL)NiCl(2)] x nH(2)O and [LNi(OH)](2), where L is the monobasic anion of HL(2) or HL(3). The nature of the products is solvent and ligand dependent. The complexes are characterized by elemental analyses, molar conductivity, magnetic moments and spectroscopic (IR and UV/vis) measurements. The IR showed that the ligands act as neutral bidentate coordinated to the nickel(II) through the azomethine nitrogen and carbonyl oxygen atoms in case of [(HL)NiCl(2)] x nH(2)O. In case of [LNi(OH)](2), the ligands are monobasic bidentate bonded to the nickel(II) through the azomethine nitrogen and the enolato oxygen atoms. The room temperature magnetic moment values of 1.58-2.49 B.M. for [(HL)NiCl(2)] x nH(2)O and [LNi(OH)](2) and their electronic spectral data indicate that these complexes have square planar-tetrahedral equilibrium. The values of 1.61 and 1.58 B.M. for the hydroxo-complexes support their dimeric nature. The electronic spectral of [(HL)NiCl(2)] x nH(2)O and [LNi(OH)](2) in pyridine or alpha-picoline indicated the formation of six-coordinate adducts. The hydroxo-complexes reacted with different Lewis bases to give the complexes [L(2)Ni(L(s))(2)], where L(s)=Py, 2-Pic, 3-Pic, 4-Pic or n-PrNH(2). The relationship between the pK(b) of the Lewis base and the upsilon(Ni-O) of the ligand and upsilon(Ni-N) of the Lewis base was studied. The different ligand field parameters are calculated for the parent ligands in solutions and the solid mixed ligand complexes. The data showed that both are associated with a distorted octahedral ligand field around the nickel(II) and the ligand fields in solution are different from that in solid. The extent of distortion for the parent complexes is more than that in the solid adducts. Furthermore, the data showed that the nickel-ligand bonding in [LNi(OH)](2) is more covalent than in [L(2)Ni(L(s))(2)].


Asunto(s)
Hidrazonas/síntesis química , Níquel/química , Espectrofotometría , Triazoles/síntesis química , Hidrazonas/química , Estructura Molecular , Propano/análogos & derivados , Propano/síntesis química , Espectrofotometría Infrarroja , Triazoles/química
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 63(3): 714-22, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16024272

RESUMEN

A new series of complexes of 4,4'-[1,4-phenylenenedi(nitilo)]dipenten-2-one, (H(2)L) with CuX(2) x nH(2)O, X = Cl, Br, ClO(4), NO(3) and OAc; n = 1-6 as well as their ethylenediamine adducts have been synthesized and characterized by different physical techniques. The formulation of the complexes is assumed based on their elemental analysis and the molar conductivity. The products are found to be pH-dependent. The IR data showed that the ligand acts as dibasic tetradentate coordinated to copper(II) ions through the enolato-oxygen and the azomethine nitrogen atoms. Electronic, ESR spectra and room temperature magnetic moments indicate that complexes 1-9 are square planar while complexes 10 and 11 are square based pyramidal. The different electronic spectral and ESR parameters are calculated and used to describe the nature of ligand-metal bonding (sigma and pi) as well as to estimate the extent of distortion. A macrocyclic containing copper(II) complex, 12 have been isolated by the reaction of Schiff-base with copper(II)-ethylenediamine mixture. The ligand (H(2)L) is designed as a building block for larger molecules and superamolecular assemblies.


Asunto(s)
Alquenos/química , Quelantes/farmacología , Cobre/química , Nitrocompuestos/química , Espectrofotometría/métodos , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Ligandos , Metales/química , Modelos Químicos , Estructura Molecular , Oxígeno/metabolismo , Bases de Schiff , Espectrofotometría Infrarroja , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA