Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Med Rep ; 24(3)2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296297

RESUMEN

Endoplasmic reticulum (ER) stress contributes to endothelial dysfunction, which is the initial step in atherogenesis. Blockade of protein tyrosine phosphatase (PTP)1B, a negative regulator of insulin receptors that is critically located on the surface of ER membrane, has been found to improve endothelial dysfunction. However, the role of ER stress and its related apoptotic sub­pathways in PTP1B­mediated endothelial dysfunction, particularly its angiogenic capacity, have not yet been fully elucidated. Thus, the present study aimed to investigate the impact of PTP1B suppression on ER stress­mediated impaired angiogenesis and examined the contribution of apoptotic signals in this process. Endothelial cells were exposed to pharmacological ER stressors, including thapsigargin (TG) or 1,4­dithiothreitol (DTT), in the presence or absence of a PTP1B inhibitor or small interfering (si)RNA duplexes. Then, ER stress, angiogenic capacity, cell cycle, apoptosis and the activation of key apoptotic signals were assessed. It was identified that the inhibition of PTP1B prevented ER stress caused by DTT and TG. Moreover, ER stress induction impaired the activation of endothelial nitric oxide synthase (eNOS) and the angiogenic capacity of endothelial cells, while PTP1B inhibition exerted a protective effect. The results demonstrated that blockade or knockdown of PTP1B prevented ER stress­induced apoptosis and cell cycle arrest. This effect was associated with reduced expression levels of caspase­12 and poly (ADP­Ribose) polymerase 1. PTP1B blockade also suppressed autophagy activated by TG. The current data support the critical role of PTP1B in ER stress­mediated endothelial dysfunction, characterized by reduced angiogenic capacity, with an underlying mechanism involving reduced eNOS activation and cell survival. These findings provide evidence of the therapeutic potential of targeting PTP1B in cardiovascular ischemic conditions.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Endoteliales/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ditiotreitol/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tapsigargina/farmacología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
2.
Eur J Pharmacol ; 907: 174247, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34116045

RESUMEN

Endoplasmic reticulum (ER) stress is an inflammatory response that contributes to endothelial cell dysfunction, a hallmark of cardiovascular diseases, in close interplay with oxidative stress. Recently, Sestrin2 (SESN2) emerged as a novel stress-inducible protein protecting cells from oxidative stress. We investigated here, for the first time, the impact of SESN2 suppression on oxidative stress and cell survival in human endothelial cells subjected to pharmacologically (thapsigargin)-induced ER stress and studied the underlying cellular pathways. We found that SESN2 silencing, though did not specifically induce ER stress, it aggravated the effects of thapsigargin-induced ER stress on oxidative stress and cell survival. This was associated with a dysregulation of Nrf-2, AMPK and mTORC1 signaling pathways. Furthermore, SESN2 silencing aggravated, in an additive manner, apoptosis caused by thapsigargin. Importantly, SESN2 silencing, unlike thapsigargin, caused a dramatic decrease in protein expression and phosphorylation of Akt, a critical pro-survival hub and component of the AMPK/Akt/mTORC1 axis. Our findings suggest that patients with conditions characterized by ER stress activation, such as diabetes, may be at higher risk for cardiovascular complications if their endogenous ability to stimulate and/or maintain expression levels of SESN2 is disturbed or impaired. Therefore, identifying novel or repurposing existing pharmacotherapies to enhance and/or maintain SESN2 expression levels would be beneficial in these conditions.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas Quinasas Activadas por AMP , Animales , Células Endoteliales , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal
3.
Front Cardiovasc Med ; 7: 584791, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363219

RESUMEN

Circulating extracellular vesicles (EVs) are recognized as biomarkers and effectors of endothelial dysfunction, the initiating step of cardiovascular abnormalities. Among these EVs, microparticles (MPs) are vesicles directly released from the cytoplasmic membrane of activated cells. MPs were shown to induce endothelial dysfunction through the activation of endoplasmic reticulum (ER) stress. However, it is not known whether ER stress can lead to MPs release from endothelial cells and what biological messages are carried by these MPs. Therefore, we aimed to assess the impact of ER stress on MPs shedding from endothelial cells, and to investigate their effects on endothelial cell function. EA.hy926 endothelial cells or human umbilical vein endothelial cells (HUVECs) were treated for 24 h with ER stress inducers, thapsigargin or dithiothreitol (DTT), in the presence or absence of 4-Phenylbutyric acid (PBA), a chemical chaperone to inhibit ER stress. Then, MPs were isolated and used to treat cells (10-20 µg/mL) for 24-48 h before assessing ER stress response, angiogenic capacity, nitric oxide (NO) release, autophagy and apoptosis. ER stress (thapsigargin or DDT)-generated MPs did not differ quantitatively from controls; however, they carried deleterious messages for endothelial function. Exposure of endothelial cells to ER stress-generated MPs increased mRNA and protein expression of key ER stress markers, indicating a vicious circle activation of ER stress. ER stress (thapsigargin)-generated MPs impaired the angiogenic capacity of HUVECs and reduced NO release, indicating an impaired endothelial function. While ER stress (thapsigargin)-generated MPs altered the release of inflammatory cytokines, they did not, however, affect autophagy or apoptosis in HUVECs. This work enhances the general understanding of the deleterious effects carried out by MPs in medical conditions where ER stress is sustainably activated such as diabetes and metabolic syndrome.

4.
Onco Targets Ther ; 13: 13357-13370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414642

RESUMEN

INTRODUCTION: Venetoclax (VCX) is a selective BCL-2 inhibitor approved for the treatment of leukemia and lymphoma. However, the mechanisms of anti-cancer effect of VCX either as a monotherapy or in combination with other chemotherapeutic agents against breast cancer need investigation. METHODS: Breast cancer cell lines with different molecular subtypes (MDA-MB-231, MCF-7, and SKBR-3) were treated with different concentrations of VCX for indicated time points. The expression of cell proliferative, apoptotic, and autophagy genes was determined by qRT-PCR and Western blot analyses. In addition, the percentage of MDA-MB-231 cells underwent apoptosis, expressed higher oxidative stress levels, and the changes in the cell cycle phases were determined by flow cytometry. RESULTS: Treatment of human breast cancer cells with increasing concentrations of VCX caused a significant decrease in cells growth and proliferation. This effect was associated with a significant increase in the percentage of apoptotic MDA-MB-231 cells and in the expression of the apoptotic genes, caspase 3, caspase 7, and BAX, with inhibition of anti-apoptotic gene, BCL-2 levels. Induction of apoptosis by VCX treatment induced cell cycle arrest at G0/G1 phase with inhibition of cell proliferator genes, cyclin D1 and E2F1. Furthermore, VCX treatment increased the formation of reactive oxygen species and the expression level of autophagy markers, Beclin 1 and LC3-II. Importantly, these cellular changes by VCX increased the chemo-sensitivity of MDA-MB-231 cells to doxorubicin. DISCUSSION: The present study explores the molecular mechanisms of VCX-mediated inhibitory effects on the growth and proliferation of TNBC MDA-MB-231 cells through the induction of apoptosis, cell cycle arrest, and autophagy. The study also explores the role of BCL-2 as a novel targeted therapy for breast cancer.

5.
Biomed Res Int ; 2019: 9406241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534968

RESUMEN

[This corrects the article DOI: 10.1155/2017/5903105.].

6.
J Cell Physiol ; 234(10): 16739-16754, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30912147

RESUMEN

Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.


Asunto(s)
Plaquetas , Micropartículas Derivadas de Células , Accidente Cerebrovascular/sangre , Biomarcadores/sangre , Humanos , Accidente Cerebrovascular/diagnóstico
7.
Biomed Res Int ; 2017: 5903105, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386557

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 µM) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN.


Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Rodanina/análogos & derivados , Tiazolidinas/administración & dosificación , Aldehído Reductasa/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Inhibidores Enzimáticos/administración & dosificación , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/administración & dosificación , Glucosa/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/enzimología , Túbulos Renales Proximales/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Ratas , Rodanina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...