Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochip J ; 15(3): 287-295, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394845

RESUMEN

As continues increasing the COVID-19 infections, there is an urgent need for developing fast, simple, selective, and accurate COVID-19 biosensors. A highly uniform gold (Au) microcuboid pattern was used as a microelectrode that allowed monitoring a small analyte. The electrochemical biosensor was used to monitor the COVID-19 S protein within a concentration range from 100 to 5 pmol L-1; it showed a lower detection limit of 276 fmol L-1. Finally, the developed COVID-19 sensor was used to detect a positive sample from a human patient obtained through a nasal swab; the results were confirmed using the PCR technique. The results showed that the SWV technique showed high sensitivity towards detecting COVID-19 and good efficiency for detecting COVID-19 in a positive human sample.

2.
ChemSusChem ; 13(12): 3269-3276, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32133787

RESUMEN

A new heterostructured material is synthesized with lamellar arrangements in nanoscale precision through an innovative synthetic approach. The self-assembled Ni-based cyano-bridged coordination polymer flakes (Ni-CP) and graphene oxide (GO) nanosheets with a layered morphology (Ni-CP/GO) are used as precursors for the synthesis of multicomponent hybrid materials. Annealing of Ni-CP/GO in nitrogen at 450 °C allows the formation of Ni3 C/rGO nanocomposites. Grinding Ni-CP/GO and thiourea and annealing under the same conditions produces N,S-codoped reduced GO-wrapped NiS2 flakes (NiS2 /NS-rGO). Interestingly, further heating up to 550 °C allows the phase transformation of NiS2 into NiS accompanied by the formation of a face-centered cubic (FCC-Ni) metal phase between NS-rGO layers (FCC-Ni-NiS/NS-rGO). Among all the materials, the resulting FCC-Ni-NiS/NS-rGO exhibits good electrocatalytic activity and stability toward the oxygen evolution reaction (OER) owing to the synergistic effect of multiphases, the well-designed alternating layered structures on the nanoscale with abundant active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...