Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(4): 539-550, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37024657

RESUMEN

Genome integrity requires replication to be completed before chromosome segregation. The DNA-replication checkpoint (DRC) contributes to this coordination by inhibiting CDK1, which delays mitotic onset. Under-replication of common fragile sites (CFSs), however, escapes surveillance, resulting in mitotic chromosome breaks. Here we asked whether loose DRC activation induced by modest stresses commonly used to destabilize CFSs could explain this leakage. We found that tightening DRC activation or CDK1 inhibition stabilizes CFSs in human cells. Repli-Seq and molecular combing analyses showed a burst of replication initiations implemented in mid S-phase across a subset of late-replicating sequences, including CFSs, while the bulk genome was unaffected. CFS rescue and extra-initiations required CDC6 and CDT1 availability in S-phase, implying that CDK1 inhibition permits mistimed origin licensing and firing. In addition to delaying mitotic onset, tight DRC activation therefore supports replication completion of late origin-poor domains at risk of under-replication, two complementary roles preserving genome stability.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Humanos , Fase S , Sitios Frágiles del Cromosoma/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN
3.
Cell Rep ; 32(12): 108179, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966779

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.


Asunto(s)
Rotura Cromosómica , Replicación del ADN , Síndrome del Cromosoma X Frágil/genética , Genoma Humano , Estrés Fisiológico , Afidicolina/farmacología , Línea Celular , Rotura Cromosómica/efectos de los fármacos , ADN/metabolismo , Daño del ADN , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Modelos Biológicos , Mutación/genética , Estructuras R-Loop , ARN/metabolismo , Estrés Fisiológico/efectos de los fármacos
4.
Nat Commun ; 10(1): 5693, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836700

RESUMEN

Common fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome-wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, replicated by long-travelling forks. Forks that travel long in late S phase explains CFS replication features, whereas formation of sequence-dependent fork barriers or head-on transcription-replication conflicts do not. We further show that transcription inhibition during S phase, which suppresses transcription-replication encounters and prevents origin resetting, could not rescue CFS stability. Altogether, our results show that transcription-dependent suppression of initiation events delays replication of large gene bodies, committing them to instability.


Asunto(s)
Sitios Frágiles del Cromosoma/genética , Momento de Replicación del ADN/genética , Inestabilidad Genómica , Fase S/genética , Terminación de la Transcripción Genética , Línea Celular , Humanos , Origen de Réplica , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA