Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 106(1): 56-70, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38769018

RESUMEN

The antidepressants trazodone and nefazodone were approved some 4 and 3 decades ago, respectively. Their action is thought to be mediated, at least in part, by inhibition of the serotonin transporter [SERT/solute carrier (SLC)-6A4]. Surprisingly, their mode of action on SERT has not been characterized. Here, we show that, similar to the chemically related drug vilazodone, trazodone and nefazodone are allosteric ligands: trazodone and nefazodone inhibit uptake by and transport-associated currents through SERT in a mixed-competitive and noncompetitive manner, respectively. Contrary to noribogaine and its congeners, all three compounds preferentially interact with the Na+-bound outward-facing state of SERT. Nevertheless, they act as pharmacochaperones and rescue the folding-deficient variant SERT-P601A/G602A. The vast majority of disease-associated point mutations of SLC6 family members impair folding of the encoded transporter proteins. Our findings indicate that their folding defect can be remedied by targeting allosteric sites on SLC6 transporters. SIGNIFICANCE STATEMENT: The serotonin transporter is a member of the solute carrier-6 family and is the target of numerous antidepressants. Trazodone and nefazodone have long been used as antidepressants. Here, this study shows that their inhibition of the serotonin transporter digressed from the competitive mode seen with other antidepressants. Trazodone and nefazodone rescued a folding-deficient variant of the serotonin transporter. This finding demonstrates that folding defects of mutated solute carrier-6 family members can also be corrected by allosteric ligands.


Asunto(s)
Antidepresivos , Piperazinas , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Trazodona , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Trazodona/farmacología , Trazodona/metabolismo , Humanos , Antidepresivos/farmacología , Antidepresivos/metabolismo , Piperazinas/farmacología , Piperazinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Células HEK293 , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Triazoles/farmacología , Pliegue de Proteína/efectos de los fármacos , Clorhidrato de Vilazodona/farmacología , Clorhidrato de Vilazodona/metabolismo
2.
J Neurochem ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419374

RESUMEN

Mutations in the human creatine transporter 1 (CRT1/SLC6A8) cause the creatine transporter deficiency syndrome, which is characterized by intellectual disability, epilepsy, autism, and developmental delay. The vast majority of mutations cause protein misfolding and hence reduce cell surface expression. Hence, it is important to understand the molecular machinery supporting folding and export of CRT1 from the endoplasmic reticulum (ER). All other SLC6 members thus far investigated rely on a C-terminal motif for binding the COPII-component SEC24 to drive their ER export; their N-termini are dispensable. Here, we show that, in contrast, in CRT1 the C-terminal ER-export motif is cryptic and it is the N-terminus, which supports ER export. This conclusion is based on the following observations: (i) siRNA-induced depletion of individual SEC24 isoforms revealed that CRT1 relied on SEC24C for ER export. However, mutations of the C-terminal canonical ER-export motif of CRT1 did not impair its cell surface delivery. (ii) Nevertheless, the C-terminal motif of CRT1 was operational in a chimeric protein comprising the serotonin transporter (SERT/SLC6A4) and the C-terminus of CRT1. (iii) Tagging of the N-terminus-but not the C-terminus-with yellow fluorescent protein (YFP) resulted in ER retention. (iv) Serial truncations of the N-terminus showed that removal of ≥51 residues of CRT1 impaired surface delivery, because the truncated CRT1 were confined to the ER. (v) Mutation of P51 to alanine also reduced cell surface delivery of CRT1 and relieved its dependence on SEC24C. Thus, the ER-export motif in the N-terminus of CRT1 overrides the canonical C-terminal motif.

3.
Protein Sci ; 33(1): e4842, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032325

RESUMEN

In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.


Asunto(s)
Creatina , Proteínas de Transporte de Membrana , Humanos , Creatina/genética , Creatina/metabolismo , Mutagénesis , Mutación
4.
Elife ; 122023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36648438

RESUMEN

The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action - that is, the retrieval of serotonin from the extracellular space - SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Células HEK293 , Transporte Iónico
5.
Eur J Pharmacol ; 939: 175454, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549498

RESUMEN

The antidepressant-like activity of (+)-catharanthine and (-)-18-methoxycoronaridine [(-)-18-MC] was studied in male and female mice using forced swim (FST) and tail suspension tests (TST). The underlying molecular mechanism was assessed by electrophysiological, radioligand, and functional experiments. The FST results showed that acute administration (40 mg/kg) of (+)-catharanthine or (-)-18-MC induces similar antidepressant-like activity in male and female mice at 1 h and 24 h, whereas the TST results showed a lower effect for (-)-18-MC at 24 h. Repeated treatment at lower dose (20 mg/kg) augmented the efficacy of both congeners. The FST results showed that (-)-18-MC reduces immobility and increases swimming times without changing climbing behavior, whereas (+)-catharanthine reduces immobility time, increases swimming times more markedly, and increases climbing behavior. To investigate the contribution of the serotonin and norepinephrine transporters in the antidepressant effects of (+)-catharanthine and (-)-18-MC, we conducted in vitro radioligand and functional studies. Results obtained demonstrated that (+)-catharanthine inhibits norepinephrine transporter with higher potency/affinity than that for (-)-18-MC, whereas both congeners inhibit serotonin transporter with similar potency/affinity. Moreover, whereas no congener activated/inhibited/potentiated the function of serotonin receptor 3A or serotonin receptor 3AB, both increased serotonin receptor 3A receptor desensitization. Depletion of serotonin decreased the antidepressant-like activity of both congeners, whereas norepinephrine depletion only decreased (+)-catharanthine's activity. Our study shows that coronaridine congeners induce antidepressant-like activity in a dose- and time-dependent, and sex-independent, manner. The antidepressant-like property of both compounds involves serotonin transporter inhibition, without directly activating/inhibiting serotonin receptors 3, while (+)-catharanthine also mobilizes norepinephrinergic neurotransmission.


Asunto(s)
Proteínas de Transporte de Serotonina en la Membrana Plasmática , Serotonina , Ratones , Masculino , Femenino , Animales , Serotonina/fisiología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Transmisión Sináptica , Norepinefrina , Suspensión Trasera , Depresión/tratamiento farmacológico
6.
Front Physiol ; 13: 919439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837012

RESUMEN

Creatine serves as an ATP buffer and is thus an integral component of cellular energy metabolism. Most cells maintain their creatine levels via uptake by the creatine transporter (CRT-1, SLC6A8). The activity of CRT-1, therefore, is a major determinant of cytosolic creatine concentrations. We determined the kinetics of CRT-1 in real time by relying on electrophysiological recordings of transport-associated currents. Our analysis revealed that CRT-1 harvested the concentration gradient of NaCl and the membrane potential but not the potassium gradient to achieve a very high concentrative power. We investigated the mechanistic basis for the ability of CRT-1 to maintain the forward cycling mode in spite of high intracellular concentrations of creatine: this is achieved by cooperative binding of substrate and co-substrate ions, which, under physiological ion conditions, results in a very pronounced (i.e. about 500-fold) drop in the affinity of creatine to the inward-facing state of CRT-1. Kinetic estimates were integrated into a mathematical model of the transport cycle of CRT-1, which faithfully reproduced all experimental data. We interrogated the kinetic model to examine the most plausible mechanistic basis of cooperativity: based on this systematic exploration, we conclude that destabilization of binary rather than ternary complexes is necessary for CRT-1 to maintain the observed cytosolic creatine concentrations. Our model also provides a plausible explanation why neurons, heart and skeletal muscle cells must express a creatine releasing transporter to achieve rapid equilibration of the intracellular creatine pool.

7.
Mol Pharmacol ; 101(2): 95-105, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34866045

RESUMEN

Folding-deficient mutants of solute carrier 6 (SLC6) family members have been linked to human diseases. The serotonin transporter [(SERT)/SLC6A4] is an important drug target in the treatment of depression, anxiety, and obsessive-compulsive disorders and-with structural information in several conformational states-one of the best understood transporters. Here, we surmised that thermal unfolding offered a glimpse on the folding energy landscape of SLC6 transporters. We carried out molecular dynamic (MD) simulations to understand the mechanistic basis for enhanced and reduced stability, respectively, of the thermostabilized variant SERT-Y110A/I291A/T439S, which had previously been used for crystallization of human SERT in the outward-facing state, and of the folding-deficient SERT-P601A/G602A. We also examined the hydrophobic mismatch caused by the absence of cholesterol to explore the contribution of cholesterol to protein stability. When compared with wild type SERT, the thermodynamic and kinetic stability of SERT-Y110A/I291A/T439S was enhanced. In the other instances, changes in these two components were not correlated: the mutations in SERT-P601A/G602A led to a drop in thermodynamic but an increase in kinetic stability. The divergence was even more pronounced after cholesterol depletion, which reduced thermodynamic stability but increased the kinetic stability of wild type SERT to a level comparable to that of SERT-Y110A/I291A/T439S. We conclude that the low cholesterol content of the endoplasmic reticulum facilitates progression of the folding trajectory by reducing the energy difference between folding intermediates and the native state. SIGNIFICANCE STATEMENT: Point mutations in solute carrier 6 (SLC6) family members cause folding diseases. The serotonin transporter [(SERT)/SLC6A4] is a target for antidepressants and the best understood SLC6. This study produced molecular dynamics simulations and examined thermal unfolding of wild type and mutant SERT variants to understand their folding energy landscape. In the folding-deficient SERT-P012A/G602A, changes in kinetic and thermodynamic stability were not correlated. Similarly, cholesterol depletion lowered thermodynamic but enhanced kinetic stability. These observations allow for rationalizing the action of pharmacochaperones.


Asunto(s)
Colesterol/metabolismo , Mutación/genética , Desplegamiento Proteico/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Termodinámica , Antidepresivos/metabolismo , Antidepresivos/farmacología , Variación Genética/genética , Células HEK293 , Humanos , Cinética , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Estabilidad Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química
8.
Front Neurosci ; 16: 1074427, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741049

RESUMEN

Mutations in the human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) can instigate myoclonic-atonic and other generalized epilepsies in the afflicted individuals. We systematically examined fifteen hGAT-1 disease variants, all of which dramatically reduced or completely abolished GABA uptake activity. Many of these loss-of-function variants were absent from their regular site of action at the cell surface, due to protein misfolding and/or impaired trafficking machinery (as verified by confocal microscopy and de-glycosylation experiments). A modest fraction of the mutants displayed correct targeting to the plasma membrane, but nonetheless rendered the mutated proteins devoid of GABA transport, possibly due to structural alterations in the GABA binding site/translocation pathway. We here focused on a folding-deficient A288V variant. In flies, A288V reiterated its impeded expression pattern, closely mimicking the ER-retention demonstrated in transfected HEK293 cells. Functionally, A288V presented a temperature-sensitive seizure phenotype in fruit flies. We employed diverse small molecules to restore the expression and activity of folding-deficient hGAT-1 epilepsy variants, in vitro (in HEK293 cells) and in vivo (in flies). We identified three compounds (chemical and pharmacological chaperones) conferring moderate rescue capacity for several variants. Our data grant crucial new insights into: (i) the molecular basis of epilepsy in patients harboring hGAT-1 mutations, and (ii) a proof-of-principle that protein folding deficits in disease-associated hGAT-1 variants can be corrected using the pharmacochaperoning approach. Such innovative pharmaco-therapeutic prospects inspire the rational design of novel drugs for alleviating the clinical symptoms triggered by the numerous emerging pathogenic mutations in hGAT-1.

9.
PLoS One ; 16(5): e0252211, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34043688

RESUMEN

Clostridioides difficile (C. difficile) infection is a major public health problem worldwide. The current treatment of C. difficile-associated diarrhea relies on the use of antibacterial agents. However, recurrences are frequent. The main virulence factors of C. difficile are two secreted cytotoxic proteins toxin A and toxin B. Alternative research exploring toxin binding by resins found a reduced rate of recurrence by administration of tolevamer. Hence, binding of exotoxins may be useful in preventing a relapse provided that the adsorbent is innocuous. Here, we examined the toxin binding capacity of G-PUR®, a purified version of natural clinoptilolite-tuff. Our observations showed that the purified clinoptilolite-tuff adsorbed clinically relevant amounts of C. difficile toxins A and B in vitro and neutralized their action in a Caco-2 intestinal model. This conclusion is based on four independent sets of findings: G-PUR® abrogated toxin-induced (i) RAC1 glucosylation, (ii) redistribution of occludin, (iii) rarefaction of the brush border as visualized by scanning electron microscopy and (iv) breakdown of the epithelial barrier recorded by transepithelial electrical resistance monitoring. Finally, we confirmed that the epithelial monolayer tolerated G-PUR® over a wide range of particle densities. Our findings justify the further exploration of purified clinoptilolite-tuff as a safe agent in the treatment and/or prevention of C. difficile-associated diarrhea.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/inmunología , Infecciones por Clostridium/prevención & control , Enterotoxinas/metabolismo , Factores de Virulencia/metabolismo , Zeolitas/farmacología , Células CACO-2 , Humanos , Unión Proteica
10.
ACS Pharmacol Transl Sci ; 4(2): 503-516, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860180

RESUMEN

Missense mutations that give rise to protein misfolding are rare, but collectively, defective protein folding diseases are consequential. Folding deficiencies are amenable to pharmacological correction (pharmacochaperoning), but the underlying mechanisms remain enigmatic. Ibogaine and its active metabolite noribogaine correct folding defects in the dopamine transporter (DAT), but they rescue only a very limited number of folding-deficient DAT mutant proteins, which give rise to infantile Parkinsonism and dystonia. Herein, a series of analogs was generated by reconfiguring the complex ibogaine ring system and exploring the structural requirements for binding to wild-type transporters, as well as for rescuing two equivalent synthetic folding-deficient mutants, SERT-PG601,602AA and DAT-PG584,585AA. The most active tropane-based analog (9b) was also an effective pharmacochaperone in vivo in Drosophila harboring the DAT-PG584,585AA mutation and rescued 6 out of 13 disease-associated human DAT mutant proteins in vitro. Hence, a novel lead pharmacochaperone has been identified that demonstrates medication development potential for patients harboring DAT mutations.

12.
Pharmacol Ther ; 222: 107785, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33310157

RESUMEN

Neurotransmitters, such as γ-aminobutyric acid, glutamate, acetyl choline, glycine and the monoamines, facilitate the crosstalk within the central nervous system. The designated neurotransmitter transporters (NTTs) both release and take up neurotransmitters to and from the synaptic cleft. NTT dysfunction can lead to severe pathophysiological consequences, e.g. epilepsy, intellectual disability, or Parkinson's disease. Genetic point mutations in NTTs have recently been associated with the onset of various neurological disorders. Some of these mutations trigger folding defects in the NTT proteins. Correct folding is a prerequisite for the export of NTTs from the endoplasmic reticulum (ER) and the subsequent trafficking to their pertinent site of action, typically at the plasma membrane. Recent studies have uncovered some of the key features in the molecular machinery responsible for transporter protein folding, e.g., the role of heat shock proteins in fine-tuning the ER quality control mechanisms in cells. The therapeutic significance of understanding these events is apparent from the rising number of reports, which directly link different pathological conditions to NTT misfolding. For instance, folding-deficient variants of the human transporters for dopamine or GABA lead to infantile parkinsonism/dystonia and epilepsy, respectively. From a therapeutic point of view, some folding-deficient NTTs are amenable to functional rescue by small molecules, known as chemical and pharmacological chaperones.


Asunto(s)
Proteínas de Transporte de Neurotransmisores , Humanos , Neurotransmisores/metabolismo , Proteínas de Transporte de Neurotransmisores/genética , Proteínas de Transporte de Neurotransmisores/metabolismo , Pliegue de Proteína , Transporte de Proteínas/genética
13.
Front Synaptic Neurosci ; 12: 588954, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192443

RESUMEN

Creatine provides cells with high-energy phosphates for the rapid reconstitution of hydrolyzed adenosine triphosphate. The eponymous creatine transporter (CRT1/SLC6A8) belongs to a family of solute carrier 6 (SLC6) proteins. The key role of CRT1 is to translocate creatine across tissue barriers and into target cells, such as neurons and myocytes. Individuals harboring mutations in the coding sequence of the human CRT1 gene develop creatine transporter deficiency (CTD), one of the pivotal underlying causes of cerebral creatine deficiency syndrome. CTD encompasses an array of clinical manifestations, including severe intellectual disability, epilepsy, autism, development delay, and motor dysfunction. CTD is characterized by the absence of cerebral creatine, which implies an indispensable role for CRT1 in supplying the brain cells with creatine. CTD-associated variants dramatically reduce or abolish creatine transport activity by CRT1. Many of these are point mutations that are known to trigger folding defects, leading to the retention of encoded CRT1 proteins in the endoplasmic reticulum and precluding their delivery to the cell surface. Misfolding of several related SLC6 transporters also gives rise to detrimental pathologic conditions in people; e.g., mutations in the dopamine transporter induce infantile parkinsonism/dystonia, while mutations in the GABA transporter 1 cause treatment-resistant epilepsy. In some cases, folding defects are amenable to rescue by small molecules, known as pharmacological and chemical chaperones, which restore the cell surface expression and transport activity of the previously non-functional proteins. Insights from the recent molecular, animal and human case studies of CTD add toward our understanding of this complex disorder and reveal the wide-ranging effects elicited upon CRT1 dysfunction. This grants novel therapeutic prospects for the treatment of patients afflicted with CTD, e.g., modifying the creatine molecule to facilitate CRT1-independent entry into brain cells, or correcting folding-deficient and loss-of-function CTD variants using pharmacochaperones and/or allosteric modulators. The latter justifies a search for additional compounds with a capacity to correct mutation-specific defects.

14.
Mol Pharmacol ; 98(3): 250-266, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817461

RESUMEN

In medium-size, spiny striatal neurons of the direct pathway, dopamine D1- and adenosine A1-receptors are coexpressed and are mutually antagonistic. Recently, a mutation in the gene encoding the A1-receptor (A1R), A1R-G279S7.44, was identified in an Iranian family: two affected offspring suffered from early-onset l-DOPA-responsive Parkinson's disease. The link between the mutation and the phenotype is unclear. Here, we explored the functional consequence of the G279S substitution on the activity of the A1-receptor after heterologous expression in HEK293 cells. The mutation did not affect surface expression and ligand binding but changed the susceptibility to heat denaturation: the thermodynamic stability of A1R-G279S7.44 was enhanced by about 2 and 8 K when compared with wild-type A1-receptor and A1R-Y288A7.53 (a folding-deficient variant used as a reference), respectively. In contrast, the kinetic stability was reduced, indicating a lower energy barrier for conformational transitions in A1R-G279S7.44 (73 ± 23 kJ/mol) than in wild-type A1R (135 ± 4 kJ/mol) or in A1R-Y288A7.53 (184 ± 24 kJ/mol). Consistent with this lower energy barrier, A1R-G279S7.44 was more effective in promoting guanine nucleotide exchange than wild-type A1R. We detected similar levels of complexes formed between D1-receptors and wild-type A1R or A1R-G279S7.44 by coimmunoprecipitation and bioluminescence resonance energy transfer. However, lower concentrations of agonist were required for half-maximum inhibition of dopamine-induced cAMP accumulation in cells coexpressing D1-receptor and A1R-G279S7.44 than in those coexpressing wild-type A1R. These observations predict enhanced inhibition of dopaminergic signaling by A1R-G279S7.44 in vivo, consistent with a pathogenic role in Parkinson's disease. SIGNIFICANCE STATEMENT: Parkinson's disease is caused by a loss of dopaminergic input from the substantia nigra to the caudate nucleus and the putamen. Activation of the adenosine A1-receptor antagonizes responses elicited by dopamine D1-receptor. We show that this activity is more pronounced in a mutant version of the A1-receptor (A1R-G279S7.44), which was identified in individuals suffering from early-onset Parkinson's disease.


Asunto(s)
Sustitución de Aminoácidos , Enfermedad de Parkinson/genética , Receptor de Adenosina A1/química , Receptor de Adenosina A1/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Receptor de Adenosina A1/genética , Termodinámica
15.
Neuropharmacology ; 161: 107572, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30885608

RESUMEN

Diseases arising from misfolding of SLC6 transporters have been reported over recent years, e.g. folding-deficient mutants of the dopamine transporter and of the glycine transporter-2 cause infantile/juvenile Parkinsonism dystonia and hyperekplexia, respectively. Mutations in the coding sequence of the human creatine transporter-1 (hCRT-1/SLC6A8) gene result in a creatine transporter deficiency syndrome, which varies in its clinical manifestation from epilepsy, mental retardation, autism, development delay and motor dysfunction to gastrointestinal symptoms. Some of the mutations in hCRT-1 occur at residues, which are highly conserved across the SLC6 family. Here, we examined 16 clinically relevant hCRT-1 variants to verify the conjecture that they were misfolded and that this folding defect was amenable to correction. Confocal microscopy imaging revealed that the heterologously expressed YFP-tagged mutant CRTs were trapped in the endoplasmic reticulum (ER), co-localised with the ER-resident chaperone calnexin. In contrast, the wild type hCRT-1 reached the plasma membrane. Preincubation of transiently transfected HEK293 cells with the chemical chaperone 4-phenylbutyrate (4-PBA) restored ER export and surface expression of as well as substrate uptake by several folding-deficient CRT-1 mutants. A representative mutant (hCRT-1-P544L) was expressed in rat primary hippocampal neurons to verify pharmacochaperoning in a target cell: 4-PBA promoted the delivery of hCRT-1-P544L to the neurite extensions. These observations show that several folding-deficient hCRT-1 mutants can be rescued. This proof-of-principle justifies the search for additional pharmacochaperones to restore folding of 4PBA-unresponsive hCRT-1 mutants. Finally, 4-PBA is an approved drug in paediatric use: this provides a rationale for translating the current insights into clinical trials. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Encefalopatías Metabólicas Innatas/tratamiento farmacológico , Creatina/deficiencia , Discapacidad Intelectual Ligada al Cromosoma X/tratamiento farmacológico , Proteínas del Tejido Nervioso/efectos de los fármacos , Fenilbutiratos/farmacología , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/deficiencia , Deficiencias en la Proteostasis/tratamiento farmacológico , Animales , Encefalopatías Metabólicas Innatas/genética , Calnexina/metabolismo , Membrana Celular/metabolismo , Creatina/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Células HEK293 , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuritas/metabolismo , Neuronas/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Cultivo Primario de Células , Deficiencias en la Proteostasis/genética , Ratas
16.
J Biol Chem ; 292(47): 19250-19265, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28972153

RESUMEN

Point mutations in the gene encoding the human dopamine transporter (hDAT, SLC6A3) cause a syndrome of infantile/juvenile dystonia and parkinsonism. To unravel the molecular mechanism underlying these disorders and investigate possible pharmacological therapies, here we examined 13 disease-causing DAT mutants that were retained in the endoplasmic reticulum when heterologously expressed in HEK293 cells. In three of these mutants, i.e. hDAT-V158F, hDAT-G327R, and hDAT-L368Q, the folding deficit was remedied with the pharmacochaperone noribogaine or the heat shock protein 70 (HSP70) inhibitor pifithrin-µ such that endoplasmic reticulum export of and radioligand binding and substrate uptake by these DAT mutants were restored. In Drosophila melanogaster, DAT deficiency results in reduced sleep. We therefore exploited the power of targeted transgene expression of mutant hDAT in Drosophila to explore whether these hDAT mutants could also be pharmacologically rescued in an intact organism. Noribogaine or pifithrin-µ treatment supported hDAT delivery to the presynaptic terminals of dopaminergic neurons and restored sleep to normal length in DAT-deficient (fumin) Drosophila lines expressing hDAT-V158F or hDAT-G327R. In contrast, expression of hDAT-L368Q in the Drosophila DAT mutant background caused developmental lethality, indicating a toxic action not remedied by pharmacochaperoning. Our observations identified those mutations most likely amenable to pharmacological rescue in the affected children. In addition, our findings also highlight the challenges of translating insights from pharmacochaperoning in cell culture to the clinical situation. Because of the evolutionary conservation in dopaminergic neurotransmission between Drosophila and people, pharmacochaperoning of DAT in D. melanogaster may allow us to bridge that gap.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Drosophila melanogaster/efectos de los fármacos , Ibogaína/análogos & derivados , Mutación , Trastornos Parkinsonianos/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Humanos , Ibogaína/farmacología , Masculino , Trastornos Parkinsonianos/genética , Transmisión Sináptica
17.
J Biol Chem ; 292(40): 16773-16786, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28842491

RESUMEN

Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to µm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants.


Asunto(s)
Chaperonas Moleculares/química , Naftoles/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Sustitución de Aminoácidos , Células HEK293 , Humanos , Transporte Iónico , Membrana Dobles de Lípidos/química , Chaperonas Moleculares/farmacología , Mutación Missense , Naftoles/farmacología , Conformación Proteica , Pliegue de Proteína , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sodio/química , Sodio/metabolismo
18.
J Biol Chem ; 292(9): 3603-3613, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28104804

RESUMEN

The serotonin transporter (SERT) and other monoamine transporters operate in either a forward transport mode where the transporter undergoes a full transport cycle or an exchange mode where the transporter seesaws through half-cycles. Amphetamines trigger the exchange mode, leading to substrate efflux. This efflux was proposed to rely on the N terminus, which was suggested to adopt different conformations in the inward facing, outward facing and amphetamine-bound states. This prediction was verified by tryptic digestion of SERT-expressing membranes: in the absence of Na+, the N terminus was rapidly digested. Amphetamine conferred protection against cleavage, suggesting a relay between the conformational states of the hydrophobic core and the N terminus. We searched for a candidate segment that supported the conformational switch by serial truncation removing 22 (ΔN22), 32 (ΔN32), or 42 (ΔN42) N-terminal residues. This did not affect surface expression, inhibitor binding, and substrate influx. However, amphetamine-induced efflux by SERT-ΔN32 or SERT-ΔN42 (but not by SERT-ΔN22) was markedly diminished. We examined the individual steps in the transport cycle by recording transporter-associated currents: the recovery rate of capacitive peak, but not of steady state, currents was significantly lower for SERT-ΔN32 than that of wild type SERT and SERT-ΔN22. Thus, the exchange mode of SERT-ΔN32 was selectively impaired. Our observations show that the N terminus affords the switch between transport modes. The findings are consistent with a model where the N terminus acts as a lever to support amphetamine-induced efflux by SERT.


Asunto(s)
Anfetaminas/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas Bacterianas/química , Biotinilación , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Proteínas Luminiscentes/química , Microscopía Confocal , Neurotransmisores/química , Técnicas de Placa-Clamp , Conformación Proteica , Dominios Proteicos , Serotonina/química , Sodio/química , Tripsina/química
19.
J Biol Chem ; 291(40): 20876-20890, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27481941

RESUMEN

Folding-defective mutants of the human dopamine transporter (DAT) cause a syndrome of infantile dystonia/parkinsonism. Here, we provide a proof-of-principle that the folding deficit is amenable to correction in vivo by two means, the cognate DAT ligand noribogaine and the HSP70 inhibitor, pifithrin-µ. We examined the Drosophila melanogaster (d) mutant dDAT-G108Q, which leads to a sleepless phenotype in flies harboring this mutation. Molecular dynamics simulations suggested an unstable structure of dDAT-G108Q consistent with a folding defect. This conjecture was verified; heterologously expressed dDAT-G108Q and the human (h) equivalent hDAT-G140Q were retained in the endoplasmic reticulum in a complex with endogenous folding sensors (calnexin and HSP70-1A). Incubation of the cells with noribogaine (a DAT ligand selective for the inward-facing state) and/or pifithrin-µ (an HSP70 inhibitor) restored folding of, and hence dopamine transport by, dDAT-G108Q and hDAT-G140Q. The mutated versions of DAT were confined to the cell bodies of the dopaminergic neurons in the fly brain and failed to reach the axonal compartments. Axonal delivery was restored, and sleep time was increased to normal length (from 300 to 1000 min/day) if the dDAT-G108Q-expressing flies were treated with noribogaine and/or pifithrin-µ. Rescuing misfolded versions of DAT by pharmacochaperoning is of therapeutic interest; it may provide opportunities to remedy disorders arising from folding-defective mutants of human DAT and of other related SLC6 transporters.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Ibogaína/análogos & derivados , Pliegue de Proteína/efectos de los fármacos , Sueño/genética , Sulfonamidas/farmacología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Humanos , Ibogaína/administración & dosificación , Ibogaína/farmacología , Simulación de Dinámica Molecular , Mutación , Fenotipo , Sulfonamidas/administración & dosificación
20.
J Neurol Neuromedicine ; 1(9): 34-40, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28405636

RESUMEN

The human dopamine transporter (hDAT) belongs to the solute carrier 6 (SLC6) gene family. Point mutations in hDAT (SLC6A3) have been linked to a syndrome of dopamine transporter deficiency or infantile dystonia/parkinsonism. The mutations impair DAT folding, causing retention of variant DATs in the endoplasmic reticulum and subsequently impair transport activity. The folding trajectory of DAT itself is not understood, though many insights have been gained from studies of folding-deficient mutants of the closely related serotonin transporter (SERT); i.e. their functional rescue by pharmacochaperoning with (nor)ibogaine or heat-shock protein inhibitors. We recently provided a proof-of-principle that folding-deficits in DAT are amenable to rescue in vitro and in vivo. As a model we used the Drosophila melanogaster DAT mutant dDAT-G108Q, which phenocopies the fumin/sleepless DAT-knockout. Treatment with noribogaine and/or HSP70 inhibitor pifithrin-µ restored folding of, and dopamine transport by, dDAT-G108Q, its axonal delivery and normal sleep time in mutant flies. The possibility of functional rescue of misfolded DATs in living flies by pharmacochaperoning grants new therapeutic prospects in the remedy of folding diseases, not only in hDAT, but also in other SLC6 transporters, in particular mutants of the creatine transporter-1, which give rise to X-linked mental retardation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA