Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(23): 30408-30420, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805601

RESUMEN

Covalent organic frameworks (COFs) are a novel family of porous crystalline materials utilized in various advanced applications. However, applying COFs as a hazardous organic acid gas sensor is substantial but still challenging. Herein, a phenylenediamine-based covalent organic framework (TPDA-TPB COF) featuring excellent crystallinity, ultrastable thermal stability, and high surface area was successfully constructed. Then, the TPDA-TPB COF-modified quartz crystal microbalance (QCM) sensor is fabricated by immobilizing the TPDA-TPB COF thin film on the gold-QCM chip. The fabricated TPDA-TPB COF-modified QCM sensor demonstrates a rapid response, excellent reproducibility, high selectivity, and sensitivity to formic gas, arising from hydrogen-bonding interactions between formic acid and the outermost layer of the TPDA-TPB COF, as determined by extensive analysis and density functional theory calculations. The basic sites of the TPDA-TPB COF, which are numerous due to its high nitrogen content, and the carboxylic acid groups present in formic acid exhibit efficient interactions. The sensitivity of the TPDA-TPB COF-modified QCM sensor was found to be 7.75 Hz ppm-1 at standard room temperature and pressure conditions, with a limit of detection (LOD) of formic acid down to 1.18 ppm, which is significantly below the workplace olfactory threshold limit of 5.0 ppm established by the Occupational Safety and Health Administration. The TPDA-TPB COF-modified QCM sensor exhibits remarkable detecting capabilities, making it highly attractive for detecting organic acid vapors in diverse applications that require superior performance.

2.
Small ; : e2311472, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651243

RESUMEN

Covalent organic frameworks (COFs), which have layered stacking structures, extended π-conjugation, and periodic frameworks have become a promising class of materials for a wide range of applications. However, their synthetic pathways frequently need high temperatures, enclosed systems under high pressures, an inert atmosphere, and extended reaction time, which restrict their practicality in real-world applications. Herein, the use of gamma irradiation is presented to synthesize highly crystalline COFs at room temperature under an open-air condition within a short time. This is demonstrated that there is no significant difference in crystallinity of COFs by gamma irradiation under air, N2 or Ar atmosphere conditions. Moreover, this approach can successfully fabricate COFs in the vessel with different degrees of transparency or even in a plastic container. Importantly, this strategy is applicable not only to imine linkage of COFs but also effective to the imide linkages of COFs. Most importantly, these COFs demonstrate improved crystallinity, surface area, and thermal stability in comparison to the corresponding materials synthesized via the solvothermal method. Finally, a COF synthesized through gamma irradiation exhibits remarkable photocatalytic activity in promoting the sacrificial hydrogen evolution from water, displaying a more catalytic efficiency compared with that of its solvothermal analogue.

3.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050297

RESUMEN

Herein, we report the efficient preparation of π-electron-extended triazine-based covalent organic framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule, as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited remarkable porosity, excellent crystallinity, high surface area of 724 m2 g-1, and massive thermal stability with a char yield of 63.41%. The TFP-TPTPh COF demonstrated an excellent removal efficiency of RhB from water in 60 min when used as an adsorbent, and its maximum adsorption capacity (Qm) of 480 mg g-1 is among the highest Qm values for porous polymers ever to be recorded. In addition, the TFP-TPTPh COF showed a remarkable photocatalytic degradation of RhB dye molecules with a reaction rate constant of 4.1 × 10-2 min-1 and an efficiency of 97.02% under ultraviolet-visible light irradiation. Furthermore, without additional co-catalysts, the TFP-TPTPh COF displayed an excellent photocatalytic capacity for reducing water to generate H2 with a hydrogen evolution rate (HER) of 2712 µmol g-1 h-1. This highly active COF-based photocatalyst appears to be a useful material for dye removal from water, as well as solar energy processing and conversion.

4.
Environ Sci Pollut Res Int ; 30(12): 32371-32382, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36460890

RESUMEN

The removal of heavy metal ions from wastewater has attracted considerable interest because of their toxicity. Adsorption is one of the most promising methods for the removal of heavy metal ions due to its simplicity and effectiveness. Recently, covalent organic frameworks (COFs) have become promising adsorbents for effective wastewater remediation. However, many building blocks have been developed, and the design of COFs with high adsorption efficiency remains a challenge. Here, a covalent organic framework (DHTP-TPB COF) decorated with hydroxyl groups was developed for the efficient removal of Pb2+ ions. The DHTP-TPB COF showed excellent performance in adsorbing Pb2+ from aqueous solution. More importantly, DHTP-TPB COF exhibited high selectivity for Pb2+ compared to other competing ions, capturing Pb2+ ions with a removal efficiency of over 96% at pH 4. The results show that the DHTP-TPB COF exhibits excellent adsorption capacity at pH 4 of up to 154.3 mg/g for Pb2+ ions; the value is comparable to many previously reported COFs. Moreover, the adsorbed Pb2+ ions could be easily eluted with a 0.1 M EDTA solution, and the DHTP-TPB COF can be reused for more than five adsorption-desorption cycles without significant loss of adsorption capacity. Moreover, the adsorption mechanism was revealed using XPS analysis, indicating the formation of strong coordination-bonding interactions between hydroxyl and Pb2+ ions. Therefore, the DHTP-TPB COF prepared herein has high potential for the treatment of Pb2+-contaminated wastewater and is promising for the adsorption of Pb2+ ions in practical applications.


Asunto(s)
Estructuras Metalorgánicas , Metales Pesados , Contaminantes Químicos del Agua , Plomo , Adsorción , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Iones
5.
J Colloid Interface Sci ; 633: 775-785, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36493742

RESUMEN

The efficient and selective photocatalytic CO2 conversion into higher-valued hydrocarbon products (e.g., methane and ethane) over covalent organic frameworks (COFs) remains a challenge, with all previously reported attempts producing carbon monoxide as the dominant product. Herein, we report a new ethene-based COF, through polycondensation of electron-rich (E)-1,2­diphenylethene and 1,3,6,8­tetraphenylpyrene units. The synthesized ethene-based COF functioned as an efficient metal-free photocatalyst for the conversion of CO2 into methane under visible light irradiation, with a selectivity of 100 %, a production rate of 14.7 µmol g-1h-1, and an apparent quantum yield of c.a. 0.99 % at 489.5 nm, which are the most promising values reported for CO2 conversion by a metal-free COF photocatalyst, without any support from a co-catalyst. The carbon origin of CH4 product is confirmed by isotope tracer 13CO2 experiment. Moreover, the photocatalytic system consistently produces methane for > 14 h with recyclability.

6.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144673

RESUMEN

In this study, we prepared a difunctionalized cyanate ester double-decker silsesquioxane (DDSQ-OCN) cage with a char yield and thermal decomposition temperature (Td) which were both much higher than those of a typical bisphenol A dicyanate ester (BADCy, without the DDSQ cage) after thermal polymerization. Here, the inorganic DDSQ nanomaterial improved the thermal behavior through a nano-reinforcement effect. Blending the inorganic DDSQ-OCN cage into the epoxy resin improved its thermal and mechanical stabilities after the ring-opening polymerization of the epoxy units during thermal polymerization. The enhancement in the physical properties arose from the copolymerization of the epoxy and OCN units to form the organic/inorganic covalently bonded network structure, as well as the hydrogen bonding of the OH groups of the epoxy with the SiOSi moieties of the DDSQ units. For example, the epoxy/DDSQ-OCN = 1/1 hybrid, prepared without Cu(II)-acac as a catalyst, exhibited a glass transition temperature, thermal decomposition temperature (Td), and char yield (166 °C, 427 °C, and 51.0 wt%, respectively) that were significantly higher than those obtained when applying typical organic curing agents in the epoxy resin. The addition of Cu(II)-acac into the epoxy/BADCy and epoxy/DDSQ-OCN hybrids decreased the thermal stability (as characterized by the values of Td and the char yields) because the crosslinking density and post-hardening also decreased during thermal polymerization; nevertheless, it accelerated the thermal polymerization to a lower curing peak temperature, which is potentially useful for real applications as epoxy molding compounds.

7.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015687

RESUMEN

Covalent organic frameworks (COFs) have attracted significant interest because of their heteroatom-containing architectures, high porous networks, large surface areas, and capacity to include redox-active units, which can provide good electrochemical efficiency in energy applications. In this research, we synthesized two novel hydroxy-functionalized COFs-TAPT-2,3-NA(OH)2, TAPT-2,6-NA(OH)2 COFs-through Schiff-base [3 + 2] polycondensations of 1,3,5-tris-(4-aminophenyl)triazine (TAPT-3NH2) with 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde (2,3-NADC) and 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde (2,6-NADC), respectively. The resultant hydroxy-functionalized COFs featured high BET-specific surface areas up to 1089 m2 g-1, excellent crystallinity, and superior thermal stability up to 60.44% char yield. When used as supercapacitor electrodes, the hydroxy-functionalized COFs exhibited electrochemical redox activity due to the presence of redox-active 2,3-dihydroxynaphthalene and 2,6-dihydroxynaphthalene in their COF skeletons. The hydroxy-functionalized COFs showed specific capacitance of 271 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 86.5% capacitance retention. Well-known pore features and high surface areas of such COFs, together with their superior supercapacitor performance, make them suitable electrode materials for use in practical applications.

8.
Polymers (Basel) ; 14(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35160439

RESUMEN

New porphyrin-functionalized benzoxazine (Por-BZ) in high purity and yield was synthesized in this study based on 1H and 13C NMR and FTIR spectroscopic analyses through the reduction of Schiff base formed from tetrakis(4-aminophenyl)porphyrin (TAPP) and salicylaldehyde and the subsequent reaction with CH2O. Thermal properties of the product formed through ring-opening polymerization (ROP) of Por-BZ were measured using DSC, TGA and FTIR spectroscopy. Because of the rigid structure of the porphyrin moiety appended to the benzoxazine unit, the temperature required for ROP (314 °C) was higher than the typical Pa-type benzoxazine monomer (ca. 260 °C); furthermore, poly(Por-BZ) possessed a high thermal decomposition temperature (Td10 = 478 °C) and char yield (66 wt%) after thermal polymerization at 240 °C. An investigation of the thermal and luminescence properties of metal-porphyrin complexes revealed that the insertion of Ni and Zn ions decreased the thermal ROP temperatures of the Por-BZ/Ni and Por-BZ/Zn complexes significantly, to 241 and 231 °C, respectively. The metal ions acted as the effective promoter and catalyst for the thermal polymerization of the Por-BZ monomer, and also improved the thermal stabilities after thermal polymerization.

9.
ACS Omega ; 6(39): 25574-25584, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632214

RESUMEN

A rapid, efficient, and one-pot protocol has been developed for the synthesis of cyclized 2,6-dimethyl-5-substituted-thiazolo[3,2-b]-s-triazoles (3a-c) through the interaction of 5-methyl-1H-s-triazole-3-thiol (1) with aliphatic ketones (2a-d) in refluxing acetic acid in the presence of a catalytic amount of sulfuric acid (AcOH/H+) while with aromatic ketones (5a-d), a mixture of uncyclized 3-methyl-s-triazolylthioacetophenone derivatives (6a-d) and cyclized 6-aryl-2-methyl-thiazolo[3,2-b]-s-triazoles (7a-d) has been produced. With this catalytic system, inexpensive sulfuric acid was utilized as a catalyst, which prevented the production of poisonous and irritating halo carbonyl compounds. On the other hand, the interaction of s-triazole 1 with cyano compounds (9a,b) afforded the corresponding 6-amino-2-methyl-5-substituted-thiazolo[3,2-b]-s-triazoles (10a,b). Similarly, treatment of 4-amino-3-methyl-s-triazole-5-thiol (12) with aliphatic and aromatic ketones (2c and 5a-e) afforded directly 3-methyl-7H-s-triazolo[3,4-b]-1,3,4-thiadiazines (13a and 14a-e). Further, reaction of 12 with cyano compounds (9a,b) under the same reaction conditions yielded the corresponding 3-methyl-s-triazolo[3,4-b]-1,3,4-thiadiazole derivatives (15a,b). The reaction mechanism was studied, and the structures of all novel compounds were verified using spectroscopy and elemental analysis. Moreover, the potential application of the synthesized compounds toward heavy metal ions and inorganic anion removal from aqueous solution has been investigated. The removal effectiveness for metal ions reached up to 76.29%, while for inorganic anions it reached up to 100%, indicating that such synthesized compounds are promising adsorbents for water remediation.

10.
Chem Commun (Camb) ; 57(90): 11968-11971, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34704990

RESUMEN

We report the synthesis of two carbazole-thiophene-based conjugated microporous polymers (Cz-3Th and Cz-4Th CMPs) with different degrees of planarity for photocatalytic hydrogen evolution from water. Depending upon the building linker's planarity, we found that the porous structure, hydrogen-evolution rate, and photocatalytic stability of the resultant CMPs varied.

11.
ACS Appl Mater Interfaces ; 13(44): 51906-51916, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33960191

RESUMEN

In this study, we prepared a series of conjugated microporous polymers (CMPs) through Sonogashira-Hagihara cross-couplings of a tetrabenzonaphthalene (TBN) monomer with pyrene (Py), tetraphenylethylene (TPE), and carbazole (Car) units and examined their chemical structures, thermal stabilities, morphologies, crystallinities, and porosities. TBN-TPE-CMP possessed a high surface area (1150 m2 g-1) and thermal stability (Td10 = 505 °C; char yield = 68 wt %) superior to those of TBN-Py-CMP and TBN-Car-CMP. To improve the conductivity of the TBN-CMP materials, we blended them with highly conductive single-walled carbon nanotubes (SWCNTs). Electrochemical measurements revealed that the TBN-Py-CMP/SWCNT nanocomposite had high capacitance (430 F g-1) at a current density of 0.5 A g-1 and outstanding capacitance retention (99.18%) over 2000 cycles; these characteristics were superior to those of the TBN-TPE-CMP/SWCNT and TBN-Car-CMP/SWCNT nanocomposites.

12.
Polymers (Basel) ; 13(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923188

RESUMEN

Porous organic polymers have been received considerable attention due to their heteroatom-containing structures and high surface areas, which can offer high electrochemical performance in energy applications. The majority of reported Tröger's base-functionalized porous organic polymers have been applied as effective candidates for sensing and gas separation/adsorption, while their use as electrode materials in supercapacitors is rare. Here, a novel covalent microporous organic polymer containing carbazole and Tröger's base CzT-CMOP has been successfully synthesized through the one-pot polycondensation of 9-(4-aminophenyl)-carbazole-3,6-diamine (Cz-3NH2) with dimethoxymethane. The polycondensation reaction's regioselectivity was studied using spectroscopic analyses and electronic structure calculations that confirmed the polycondensation occurred through the second and seventh positions of the carbazole unit rather than the fourth and fifth positions confirmed by first-principles calculations. Our CzT-CMOP exhibited high thermal stability of approximately 463.5 °C and a relatively high Brunauer-Emmett-Teller surface area of 615 m2 g-1 with a nonlocal density functional theory's pore size and volume of 0.48 cm3 g-1 and 1.66 nm, respectively. In addition, the synthesized CzT-CMOP displayed redox activity due to the existence of a redox-active carbazole in the polymer skeleton. CzT-CMOP revealed high electrochemical performance when used as active-electrode material in a three-electrode supercapacitor with an aqueous electrolyte of 6 M KOH, and it showed specific capacitance of 240 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 97% capacitance retention. Accordingly, such porous organic polymer appears to have a variety of uses in energy-related applications.

13.
Polymers (Basel) ; 12(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096648

RESUMEN

We successfully prepared two different classes of hypercrosslinked porous organic polymers (HPPs)-the tetraphenylethene (TPE) and (4-(5,6-Diphenyl-1H-Benzimidazol-2-yl)-triphenylamine (DPT) HPPs-through the Friedel-Crafts polymerization of tetraphenylethene and 4-(5,6-diphenyl-1H-benzimidazol-2-yl)-triphenylamine, respectively, with 1,4-bis(chloromethyl)benzene (Ph-2Cl) in the presence of anhydrous FeCl3 as a catalyst. Our porous materials exhibited high BET surface areas (up to 1000 m2 g-1) and good thermal stabilities. According to electrochemical and dyes adsorption applications, the as-prepared DPT-HPP exhibited a high specific capacitance of 110 F g-1 at a current density of 0.5 A g-1, with an excellent cycling stability of over 2000 times at 10 A g-1. In addition, DPT-HPP showed a high adsorption capacity up to 256.40 mg g-1 for the removal of RhB dye from water.

14.
Polymers (Basel) ; 12(5)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456231

RESUMEN

High-molecular-weight PLA440-b-PEO454-b-PLA440 (LEL) triblock copolymer was synthesized through simple ring-opening polymerization (ROP) by using the commercial homopolymer HO-PEO454-OH as the macro-initiator. The material acted as a single template to prepare the large mesoporous carbons by using resol-type phenolic resin as a carbon source. Self-assembled structures of phenolic/LEL blends mediated by hydrogen bonding interaction were determined by FTIR and SAXS analyses. Through thermal curing and carbonization procedures, large mesoporous carbons (>50 nm) with a cylindrical structure and high surface area (>600 m2/g) were obtained because the OH units of phenolics prefer to interact with PEO block rather than PLA block, as determined by FTIR spectroscopy. Furthermore, higher CO2 capture and good energy storage performance were observed for this large mesoporous carbon, confirming that the proposed approach provides an easy method for the preparation of large mesoporous materials.

15.
J Hazard Mater ; 391: 122163, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32062344

RESUMEN

In this study we synthesized a triazine-formaldehyde phenolic resin as a nitrogen-containing resol (N-resol) through the condensation of 2,4,6-tris(4-hydroxyphenyl)triazine and formaldehyde. We then used this N-resol as a carbon and nitrogen atom source, mixing it with a diblock copolymer of PEO-b-PCL as the soft template, for the direct synthesis of N-doped mesoporous carbons. Interestingly, the self-assembled N-resol/PEO-b-PCL blends underwent a mesophase transition from cylinder to gyroid and back again to cylinder structures upon increasing the N-resol concentration (i.e., cylinder at 50/50; gyroid at 60/40; cylinder at 70/30). After removing the soft template at 700 °C, the resultant N-doped mesoporous carbons possessed high N atom contents (up to 13 wt%) and displayed gyroid and cylinder nanostructures. The synthesized N-doped mesoporous carbons exhibited excellent CO2 uptake capacities (up to 72 and 150 mg g-1 at 298 and 273 K, respectively). Furthermore, the N-doped mesoporous gyroid carbon structure displayed high adsorption capacities toward organic dyes in water. The maximum adsorption capacities of rhodamine B and methylene blue in water reached as high as 204.08 and 308.64 mg g-1, respectively; furthermore, these N-doped mesoporous carbons also maintained up to 98 % of their maximum adsorption capacities within 45 min.

16.
RSC Adv ; 10(34): 20184-20194, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35520399

RESUMEN

An efficient, simple, and one-pot double Mannich reaction was performed for the synthesis of cyclized 2-methyl-6-substituted-6,7-dihydro-5H-s-triazolo[5,1-b]-1,3,5-thiadiazines via a reaction of 5-methyl-1H-s-triazole-3-thiol (1) with formaldehyde and primary aliphatic amines in ethanol at room temperature, while with primary aromatic amines, uncyclized 3-methyl-1-((substituted-amino)methyl)-1H-s-triazole-5-thiols were produced. Under Mannich reaction conditions, 4-amino-3-methyl-s-triazole-5-thiol (8) reacted with formaldehyde only in boiling ethanol or at room temperature to afford 3-methyl-5,6-dihydro-s-triazolo[3,4-b]-1,3,4-thiadiazole without incorporation of secondary amine. Furthermore, after reaction of compound 8 with aromatic aldehydes under different reaction conditions, uncyclized Schiff's bases were produced. Therefore, reaction of these Schiff's bases with primary or secondary amines with formaldehyde in ethanol at room temperature afforded the corresponding Mannich bases 13-14. The structures of all new compounds were confirmed using spectral analysis. Furthermore, most of the synthesized derivatives showed high efficiency for removal of Pb2+, Cd2+, Ca2+, and Mg2+ from aqueous solutions, as well as antimicrobial activity.

17.
J Nanosci Nanotechnol ; 20(5): 2917-2929, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31635629

RESUMEN

A rapid and efficient one-pot protocol has been developed for the synthesis of s-triazolo[3,4-b][1,3,4]thiadiazine and s-triazolo[3,4-b][1,3,4]thiadiazole nanoarchitectonics through the reaction of s-triazoles with ketones and nitriles in acetic acid containing a catalytic amount of sulfuric acid under microwave irradiation in excellent yields. With this catalytic reaction, the cheap sulfuric acid as well as other acids were examined as catalysts and the highly toxic and irritating haloketones and halonitriles were avoided to form. The effects of microwave power, temperature, time, solvent and catalyst were examined. This method achieved a better performance; e.g., higher yields, shorter reaction time and easier work-up as compared to other conventional methods. Therefore, the proposed method will be readily applicable to the synthesis of biologically important compounds containing s-triazolo[3,4-b][1,3,4]thiadiazine and s-triazolo[3,4-b][1,3,4]thiadiazole framework.


Asunto(s)
Tiadiazinas , Tiadiazoles , Microondas , Estructura Molecular , Triazoles
18.
Chem Commun (Camb) ; 55(99): 14890-14893, 2019 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-31763631

RESUMEN

In this study we synthesized two tetraphenyl-p-phenylenediamine-based covalent organic frameworks (TPPDA-TPPyr and TPPDA-TPTPE COFs) for potential use in high-performance electrochemical supercapacitors. This excellent performance arose from their structures containing redox-active triphenylamine derivatives and their high surface areas.

19.
Chem Asian J ; 14(9): 1429-1435, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30817093

RESUMEN

In this paper we report the construction of a hollow microtubular triazine- and benzobisoxazole-based covalent organic framework (COF) presenting a sponge-like shell through a template-free [3+2] condensation of the planar molecules 2,4,6-tris(4-formylphenyl)triazine (TPT-3CHO) and 2,5-diaminohydroquinone dihydrochloride (DAHQ-2HCl). The synthesized COF exhibited extremely high crystallinity, a high surface area (ca. 1855 m2 g-1 ), and ultrahigh thermal stability. Interestingly, a time-dependent study of the formation of the hollow microtubular COF having a sponge-like shell revealed a transformation from initial ribbon-like crystallites into a hollow tubular structure, and confirmed that the hollow nature of the synthesized COF was controlled by inside-out Ostwald ripening, while the non-interaction of the crystallites on the outer surface was responsible for the sponge-like surface of the tubules. This COF exhibited significant supercapacitor performance: a high specific capacitance of 256 F g-1 at a current density of 0.5 A g-1 , excellent cycling stability (98.8 % capacitance retention over 1850 cycles), and a high energy density of 43 Wh kg-1 . Such hollow structural COFs with sponge-like shells appear to have great potential for use as high-performance supercapacitors in energy storage applications.

20.
ACS Appl Mater Interfaces ; 11(9): 9343-9354, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30735343

RESUMEN

Covalent organic frameworks (COFs) are a family of crystalline porous networks having applications in various fields, including gas and energy storage. Despite respectable progress in the synthesis of such crystalline materials, examples of the use of template-free methods to construct COFs having hollow nano- and microstructures are rare. Furthermore, all reported methods for synthesizing these hollow structural COFs have involved [4 + 2] and [3 + 2] condensations. Herein, we report the synthesis of hollow microspherical and microtubular carbazole-based COFs through template-free, one-pot, [3 + 3] condensations of the novel triamine 9-(4-aminophenyl)-carbazole-3,6-diamine (Car-3NH2) and triformyl linkers with various degrees of planarity. Depending upon the monomer's planarity, a unique morphological variety was observed. A time-dependent study revealed that each COF formed through an individual mechanism depended on the degree of planarity of the triformyl linker; it also confirmed that the hollow structures of these COFs formed through inside-out Ostwald ripening. Our COFs exhibited high Brunauer-Emmett-Teller surface areas (up to ca. 1400 m2 g-1), excellent crystallinity, and high thermal stability. Moreover, the CO2 uptake capacities of these COFs were excellent: up to 61 and 123 mg g-1 at 298 and 273 K, respectively. The high surface areas facilitated greater numbers of strong interactions with CO2 molecules, leading to high CO2 uptake capacities. Moreover, the prepared COFs exhibited redox activity because of their redox-active triphenylamine and pyridine groups, which can be utilized in electrochemical energy storages. Accordingly, such hollow COFs having high surface areas appear to be useful materials for industrial and biological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...