Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Pathol Res Pract ; 254: 155079, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219494

RESUMEN

Breast cancer (BC) is the most common type of cancer in women to be diagnosed, and it is also the second leading cause of cancer death in women globally. It is the disease that causes the most life years adjusted for disability lost among women, making it a serious worldwide health issue. Understanding and interpreting carcinogenesis and metastatic pathways is critical for curing malignancy. Fascin-1 was recognized as an actin-bundling protein with parallel, rigid bundles as a result of the cross-linking of F-actin microfilaments. Increasing levels of fascin-1 have been associated with bad prognostic profiles, aggressiveness of clinical courses, and poor survival outcomes in a variety of human malignancies. Cancer cells that overexpress fascin-1 have higher capabilities for proliferation, invasion, migration, and metastasis. Fascin-1 is being considered as a potential target for therapy as well as a potential biomarker for diagnostics in a variety of cancer types. This review aims to provide an overview of the FSCN1 gene and its protein structure, elucidate its physiological and pathological roles, and throw light on its involvement in the initiation, development, and chemotherapeutic resistance of BC.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Biomarcadores , Pronóstico , Línea Celular Tumoral , Proteínas Portadoras , Proteínas de Microfilamentos/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 1957-1969, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37801146

RESUMEN

Pheochromocytoma (PCC) is a neuroendocrine tumor that produces and secretes catecholamine from either the adrenal medulla or extra-adrenal locations. MicroRNAs (miRNAs, miR) can be used as biomarkers to detect cancer or the return of a previously treated disease. Blood-borne miRNAs might be envisioned as noninvasive markers of malignancy or prognosis, and new studies demonstrate that microRNAs are released in body fluids as well as tissues. MiRNAs have the potential to be therapeutic targets, which would greatly increase the restricted therapy options for adrenal tumors. This article aims to consolidate and synthesize the most recent studies on miRNAs in PCC, discussing their potential clinical utility as diagnostic and prognostic biomarkers while also addressing their limitations.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , MicroARNs , Feocromocitoma , Humanos , Feocromocitoma/diagnóstico , Feocromocitoma/genética , Feocromocitoma/patología , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Pronóstico , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica
3.
Evol Bioinform Online ; 19: 11769343231217916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046652

RESUMEN

The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.

4.
Pathol Res Pract ; 251: 154855, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806169

RESUMEN

Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Biomarcadores , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas
5.
Pathol Res Pract ; 251: 154856, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806171

RESUMEN

Pheochromocytoma (PCC) is a type of neuroendocrine tumor that originates from adrenal medulla or extra-adrenal chromaffin cells and results in the production of catecholamine. Paroxysmal hypertension and cardiovascular crises were among the clinical signs experienced by people with PCC. Five-year survival of advanced-stage PCC is just around 40% despite the identification of various molecular-level fundamentals implicated in these pathogenic pathways. MicroRNAs (miRNAs, miRs) are a type of short, non-coding RNA (ncRNA) that attach to the 3'-UTR of a target mRNA, causing translational inhibition or mRNA degradation. Evidence is mounting that miRNA dysregulation plays a role in the development, progression, and treatment of cancers like PCC. Hence, this study employs a comprehensive and expedited survey to elucidate the potential role of miRNAs in the development of PCC, surpassing their association with survival rates and treatment options in this particular malignancy.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , MicroARNs , Feocromocitoma , Humanos , Feocromocitoma/diagnóstico , MicroARNs/genética , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Catecolaminas , Transducción de Señal
6.
Molecules ; 28(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37836753

RESUMEN

Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.


Asunto(s)
Antiinfecciosos , Neoplasias de la Mama , Aceites Volátiles , Humanos , Femenino , Timol/farmacología , Antifúngicos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Emulsiones/farmacología , Antiinfecciosos/farmacología , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Candida albicans
7.
Pathol Res Pract ; 251: 154872, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37820441

RESUMEN

Women of reproductive age are frequently affected by the heterogeneous endocrine-metabolic conditions recognized as polycystic ovarian syndrome (PCOS). Moreover, FSH (Follicle-stimulating hormone), steroidogenesis, and LH (Luteinizing Hormone) are suppressed by the anti-Mullerian hormone, a good indicator of ovarian reserve, that is generated from granulosa cells. In the past ten years, vitamin D (VD) has attracted and maintained great interest in human health and biomedical research, particularly those about female reproductive-metabolic problems. Therefore, this study was designed to evaluate the correlation of VD and AMH with PCOS parameters in Egyptian women. Assessments were done on 35 control women and 45 PCOS sufferers. Utilizing the updated Rotterdam criteria, PCOS was identified. After recording anthropometric data, fasting serum levels of VD, follistatin (FST), insulin, FSH, LH, total testosterone (TT), sex hormone binding globulin (SHBG), as well as fasting plasma glucose (FPG), and the free androgen index (FAI) were measured in both groups. Compared to the control group, the PCOS group had a greater prevalence of hypovitaminosis D but serum levels of follistatin, LH, TT, AMH, insulin, and FPG, were considerably higher. Besides, there was a substantial inverse relationship between VD and the levels of follistatin, FPG, LH, TT, and AMH and a positive correlation with FSH in PCOS women's blood. This study revealed that hypovitaminosis D, elevated AMH, and FST may be regarded as alarming risk factors for PCOS in Egyptian women.


Asunto(s)
Síndrome del Ovario Poliquístico , Deficiencia de Vitamina D , Femenino , Humanos , Hormona Antimülleriana , Relevancia Clínica , Egipto , Hormona Folículo Estimulante , Folistatina , Insulina , Obesidad/complicaciones , Testosterona , Vitamina D , Deficiencia de Vitamina D/complicaciones
8.
RSC Adv ; 13(33): 23365-23385, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37545598

RESUMEN

In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 µM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 µM and 24.47 µM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.

9.
Pharmaceutics ; 15(7)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37514092

RESUMEN

Animal-derived xenogeneic biomaterials utilized in different surgeries are promising for various applications in tissue engineering. However, tissue decellularization is necessary to attain a bioactive extracellular matrix (ECM) that can be safely transplanted. The main objective of the present study is to assess the structural integrity, biocompatibility, and potential use of various acellular biomaterials for tissue engineering applications. Hence, a bovine pericardium (BP), porcine pericardium (PP), and porcine tunica vaginalis (PTV) were decellularized using a Trypsin, Triton X (TX), and sodium dodecyl sulfate (SDS) (Trypsin + TX + SDS) protocol. The results reveal effective elimination of the cellular antigens with preservation of the ECM integrity confirmed via staining and electron microscopy. The elasticity of the decellularized PP (DPP) was markedly (p < 0.0001) increased. The tensile strength of DBP, and DPP was not affected after decellularization. All decellularized tissues were biocompatible with persistent growth of the adipose stem cells over 30 days. The staining confirmed cell adherence either to the peripheries of the materials or within their matrices. Moreover, the in vivo investigation confirmed the biocompatibility and degradability of the decellularized scaffolds. Conclusively, Trypsin + TX + SDS is a successful new protocol for tissue decellularization. Moreover, decellularized pericardia and tunica vaginalis are promising scaffolds for the engineering of different tissues with higher potential for the use of DPP in cardiovascular applications and DBP and DPTV in the reconstruction of higher-stress-bearing abdominal walls.

10.
Pathol Res Pract ; 248: 154715, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37517169

RESUMEN

Multiple myeloma (MM) is a cancer of plasma cells that has been extensively studied in recent years, with researchers increasingly focusing on the role of microRNAs (miRNAs) in regulating gene expression in MM. Several non-coding RNAs have been demonstrated to regulate MM pathogenesis signaling pathways. These pathways might regulate MM development, apoptosis, progression, and therapeutic outcomes. They are Wnt/ß-catenin, PI3K/Akt/mTOR, P53 and KRAS. This review highlights the impending role of miRNAs in MM signaling and their relationship with MM therapeutic interventions.

11.
Pathol Res Pract ; 248: 154704, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37499518

RESUMEN

Multiple myeloma (MM) is a tumor of transformed plasma cells. It's the second most common hematologic cancer after non-Hodgkin lymphoma. MM is a complex disease with many different risk factors, including ethnicity, race, and epigenetics. The microRNAs (miRNAs) are a critical epigenetic factor in multiple myeloma, influencing key aspects such as pathogenesis, prognosis, and resistance to treatment. They have the potential to assist in disease diagnosis and modulate the resistance behavior of MM towards therapeutic regimens. These characteristics could be attributed to the modulatory effects of miRNAs on some vital pathways such as NF-KB, PI3k/AKT, and P53. This review discusses the role of miRNAs in MM with a focus on their role in disease progression, diagnosis, and therapeutic resistance.


Asunto(s)
MicroARNs , Mieloma Múltiple , Humanos , MicroARNs/metabolismo , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , Pronóstico , Regulación Neoplásica de la Expresión Génica
12.
Pathol Res Pract ; 248: 154590, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295259

RESUMEN

Cancer of the salivary glands is one of the five major types of head and neck cancer. Due to radioresistance and a strong propensity for metastasis, the survival rate for nonresectable malignant tumors is dismal. Hence, more research is needed on salivary cancer's pathophysiology, particularly at the molecular level. The microRNAs (miRNAs) are a type of noncoding RNA that controls as many as 30% of all genes that code for proteins at the posttranscriptional level. Signature miRNA expression profiles have been established in several cancer types, suggesting a role for miRNAs in the incidence and progression of human malignancies. Salivary cancer tissues were shown to have significantly aberrant levels of miRNAs compared to normal salivary gland tissues, supporting the hypothesis that miRNAs play a crucial role in the carcinogenesis of salivary gland cancer (SGC). Besides, several SGC research articles reported potential biomarkers and therapeutic targets for the miRNA-based treatment of this malignancy. In this review, we will explore the regulatory impact of miRNAs on the processes underlying the molecular pathology of SGC and provide an up-to-date summary of the literature on miRNAs that impacted this malignancy. We will eventually share information about their possible use as diagnostic, prognostic, and therapeutic biomarkers in SGC.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de las Glándulas Salivales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Neoplasias de Cabeza y Cuello/patología , Resistencia a Medicamentos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/genética
13.
Pathol Res Pract ; 247: 154584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267724

RESUMEN

Salivary gland cancer (SGC) is immensely heterogeneous, both in terms of its physical manifestation and its aggressiveness. Developing a novel diagnostic and prognostic detection method based on the noninvasive profiling of microribonucleic acids (miRs) could be a goal for the clinical management of these specific malignancies, sparing the patients' valuable time. miRs are promising candidates as prognostic biomarkers and therapeutic targets or factors that can advance the therapy of SGC due to their ability to posttranscriptionally regulate the expression of various genes involved in cell proliferation, differentiation, cell cycle, apoptosis, invasion, and angiogenesis. Depending on their biological function, many miRs may contribute to the development of SGC. Therefore, this article serves as an accelerated study guide for SGC and the biogenesis of miRs. Here, we shall list the miRs whose function in SGC pathogenesis has recently been determined with an emphasis on their potential applications as therapeutic targets. We will also offer a synopsis of the current state of knowledge about oncogenic and tumor suppressor miRs in relation to SGC.


Asunto(s)
MicroARNs , Neoplasias de las Glándulas Salivales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de las Glándulas Salivales/patología , Genes Supresores de Tumor , Pronóstico , Transducción de Señal/genética
14.
Pathol Res Pract ; 248: 154613, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327567

RESUMEN

MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.

15.
Pathol Res Pract ; 248: 154624, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37348290

RESUMEN

For the past two decades since their discovery, scientists have linked microRNAs (miRNAs) to posttranscriptional regulation of gene expression in critical cardiac physiological and pathological processes. Multiple non-coding RNA species regulate cardiac muscle phenotypes to stabilize cardiac homeostasis. Different cardiac pathological conditions, including arrhythmia, myocardial infarction, and hypertrophy, are modulated by non-coding RNAs in response to stress or other pathological conditions. Besides, miRNAs are implicated in several modulatory signaling pathways of cardiovascular disorders including mitogen-activated protein kinase, nuclear factor kappa beta, protein kinase B (AKT), NOD-like receptor family pyrin domain-containing 3 (NLRP3), Jun N-terminal kinases (JNKs), Toll-like receptors (TLRs) and apoptotic protease-activating factor 1 (Apaf-1)/caspases. This review highlights the potential role of miRNAs as therapeutic targets and updates our understanding of their roles in the processes underlying pathogenic phenotypes of cardiac muscle.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Cardiovasculares/genética , Transducción de Señal , Regulación de la Expresión Génica
16.
Pathol Res Pract ; 246: 154511, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178618

RESUMEN

High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , MicroARNs/genética , Glioblastoma/patología , Neoplasias Encefálicas/patología , Transducción de Señal/genética , Proliferación Celular , Biomarcadores , Regulación Neoplásica de la Expresión Génica
17.
Pathol Res Pract ; 246: 154510, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37167812

RESUMEN

Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.


Asunto(s)
Neoplasias Laríngeas , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Laríngeas/genética , Resistencia a Antineoplásicos , Carcinogénesis/genética , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica
18.
Pathol Res Pract ; 246: 154529, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196470

RESUMEN

Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-ß signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Esofágicas/patología , Vía de Señalización Wnt/genética , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
19.
Pathol Res Pract ; 247: 154537, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216745

RESUMEN

Retinoblastoma (RB) is a rare tumor in children, but it is the most common primitive intraocular malignancy in childhood age, especially those below three years old. The RB gene (RB1) undergoes mutations in individuals with RB. Although mortality rates remain high in developing countries, the survival rate for this type of cancer is greater than 95-98% in industrialized countries. However, it is lethal if left untreated, so early diagnosis is essential. As a non-coding RNA, miRNA significantly impacts RB development and treatment resistance because it can control various cellular functions. In this review, we illustrate the recent advances in the role of miRNAs in RB. That includes the clinical importance of miRNAs in RB diagnosis, prognosis, and treatment. Moreover, the regulatory mechanisms of miRNAs in RB and therapeutic interventions are discussed.


Asunto(s)
MicroARNs , Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Preescolar , Retinoblastoma/genética , Retinoblastoma/terapia , MicroARNs/genética , Mutación , Pronóstico , Neoplasias de la Retina/genética , Neoplasias de la Retina/terapia
20.
Life Sci ; 322: 121667, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023952

RESUMEN

Gastric cancer (GC) is 4th in incidence and mortality rates globally. Several genetic and epigenetic factors, including microRNAs (miRNAs), affect its initiation and progression. miRNAs are short chains of nucleic acids that can regulate several cellular processes by controlling their gene expression. So, dysregulation of miRNAs expressions is associated with GC initiation, progression, invasion capacity, apoptosis evasions, angiogenesis, promotion and EMT enhancement. Of important pathways in GC and controlled by miRNAs are Wnt/ß-catenin signaling, HMGA2/mTOR/P-gp, PI3K/AKT/c-Myc, VEGFR and TGFb signaling. Hence, this review was conducted to review an updated view of the role of miRNAs in GC pathogenesis and their modulatory effects on responses to different GC treatment modalities.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Gástricas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Vía de Señalización Wnt/genética , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...