Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ASAIO J ; 64(4): 552-556, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28937410

RESUMEN

An artificial placenta (AP) using venovenous extracorporeal life support (VV-ECLS) could represent a paradigm shift in the treatment of extremely premature infants. However, AP support could potentially alter cerebral oxygen delivery. We assessed cerebral perfusion in fetal lambs on AP support using near-infrared spectroscopy (NIRS) and carotid arterial flow (CAF). Fourteen premature lambs at estimated gestational age (EGA) 130 days (term = 145) underwent cannulation of the right jugular vein and umbilical vein with initiation of VV-ECLS. An ultrasonic flow probe was placed around the right carotid artery (CA), and a NIRS sensor was placed on the scalp. Lambs were not ventilated. CAF, percentage of regional oxygen saturation (rSO2) as measured by NIRS, hemodynamic data, and blood gases were collected at baseline (native placental support) and regularly during AP support. Fetal lambs were maintained on AP support for a mean of 55 ± 27 hours. Baseline rSO2 on native placental support was 40% ± 3%, compared with a mean rSO2 during AP support of 50% ± 11% (p = 0.027). Baseline CAF was 27.4 ± 5.4 ml/kg/min compared with an average CAF of 23.7 ± 7.7 ml/kg/min during AP support. Cerebral fractional tissue oxygen extraction (FTOE) correlated negatively with CAF (r = -0.382; p < 0.001) and mean arterial pressure (r = -0.425; p < 0.001). FTOE weakly correlated with systemic O2 saturation (r = 0.091; p = 0.017). Cerebral oxygenation and blood flow in premature lambs are maintained during support with an AP. Cerebral O2 extraction is inversely related to carotid flow and is weakly correlated with systemic O2 saturation.


Asunto(s)
Órganos Artificiales , Circulación Cerebrovascular/fisiología , Placenta , Animales , Femenino , Feto , Humanos , Masculino , Embarazo , Oveja Doméstica
2.
ASAIO J ; 59(5): 474-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23896771

RESUMEN

Cardiopulmonary bypass (CPB) elicits a systemic inflammatory response. The cause may include surface-induced leukocyte activation and hemolysis. A study was designed to describe the effects of both suction and an air-blood interface independently and in combination on leukocyte and platelet activation, and hemolysis in an in vitro model. Fresh human blood was drawn and tested in four different conditions including control (A), 10 minutes of -600 mm Hg suction (B), 10 minutes of blood exposure to room air at 100 ml/min (C), and 10 minutes of simultaneous suction and air flow (D). Samples were analyzed by flow cytometry (platelets and leukocytes) and plasma-free hemoglobin (PFHb). Leukocyte CD11b expression and platelet P-selectin (CD62P) were analyzed by flow cytometry. In comparison with baseline, granulocytes were significantly activated by air (group C, p = 0.0029) and combination (group D, p = 0.0123) but not by suction alone (group B). Monocytes and platelets were not significantly activated in any group. The PFHb increased significantly in group C (p < 0.001) and group D (p < 0.001). This study suggests that the inflammatory response and associated hemolysis during CPB may be related to air exposure, which could be reduced by minimizing the air exposure of air to blood during cardiotomy suction.


Asunto(s)
Puente Cardiopulmonar/efectos adversos , Puente Cardiopulmonar/métodos , Hemólisis , Succión/efectos adversos , Aire , Plaquetas/citología , Plaquetas/metabolismo , Antígeno CD11b/metabolismo , Diseño de Equipo , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente Indirecta , Granulocitos/metabolismo , Voluntarios Sanos , Hemoglobinas/metabolismo , Humanos , Inflamación , Leucocitos/metabolismo , Monocitos/metabolismo , Selectina-P/metabolismo , Activación Plaquetaria , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...