Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643625

RESUMEN

The aging process of microplastics (MPs) could significantly change their physical and chemical characteristics and impact their migration behavior in soil. However, the complex effects of different cations and humic acids (HA) on the migration of aged MPs through saturated media are not clear. In this research, the migration and retention of pristine/aged PSMPs (polystyrene microplastics) under combined effects of cations (Na+, Ca2+) (ionic strength = 10 mM) and HA (0, 5, 15 mg/L) were investigated and analyzed in conjunction with the two-site kinetic retention model and DLVO theory. The findings showed that the aging process accelerated PSMPs migration under all tested conditions. Aged PSMPs were less susceptible to Ca2+ than pristine PSMPs. Under Ca2+ conditions, pristine/aged PSMPs showed higher retention than under Na+ conditions in the absence of HA. Furthermore, under Na+ conditions, the migration of aged PSMPs significantly increased at higher concentrations of HA. However, under Ca2+ conditions, the migration of aged PSMPs decreased significantly at higher concentrations of HA. In higher HA conditions, HA, Ca2+, and PSMPs interact to cause larger aggregations, resulting in the sedimentation of aged PSMPs. The DLVO calculations and two-site kinetic retention models' results showed the detention of PSMPs was irreversible under higher HA conditions (15 mg/L) with Ca2+, and aged PSMPs were more susceptible to clogging. These findings may help to understand the potential risk of migration behavior of PSMPs in the soil-groundwater environment.


Asunto(s)
Cationes , Sustancias Húmicas , Microplásticos , Poliestirenos , Poliestirenos/química , Microplásticos/toxicidad , Cationes/química , Porosidad , Cinética , Suelo/química
2.
Sci Total Environ ; 739: 139903, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32544683

RESUMEN

Water has a wide-ranging effect on all aspects of human life, such as health and food. However, the water has often become polluted by the waste of our industrial, agricultural, and day-to-day activities due to the impact of humans. Therefore, there is an urgent need for new technologies to remove the contaminants from water and wastewater. Thence, many ways and techniques have been developed for water and wastewater remediation. Among all the methods of water and wastewater remediation techniques, the adsorption process has gained tremendous importance as a suitable water and wastewater remediation. The application of nanoadsorbent materials is a growing solution to solving this environmental problem. The unique physical and chemical properties of nanoadsorbents enhance their application due to its higher in ranking, status, and quality and beneficial in different fields compared to traditional adsorbents. Recently, numerous studies reported that the nanosorbent materials have a great and quite promising effect on water and wastewater treatment such as carbon tube, polymeric, zeolites, metal and metal oxides nanosorbents. Thus, the aim of this review article is to provide new data on the study and the improvement in this specific field, and to provide a version of the uses, benefits and restrictions of nanosorbents in water and wastewater remediation.

3.
ACS Omega ; 4(5): 8406-8412, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459929

RESUMEN

A lot of insecticides are found nowadays, but neonicotinoids are considered the most famous. So, a series of pyridine derivatives neonicotinoids analogues, namely, 3-cyano-4,6-dimethylpyridine-2(1H)-one (1), 2-chloro-3-cyano-4,6-dimethylpyridine (2), 3-cyano-4,6-dimethylpyridine-2(1H)-thione (3), 3-cyano-4,6-distyrylpyridine-2(1H)-thione (4), 2-((3-cyano-4,6-distyrylpyridin-2-yl)thio)-N-phenylacetamide (5), 3-amino-N-phenyl-4,6-distyrylthieno[2,3-b]pyridine-2-carboxamide (6), 2-((3-cyano-4,6-distyrylpyridin-2-yl)thio)-N-(p-tolyl)acetamide (7), 3-amino-4,6-distyryl-N-(p-tolyl)thieno[2,3-b]pyridine-2-carboxamide (8), 2-((3-cyano-4,6-distyrylpyridin-2-yl)thio)-N-(4-methoxyphenyl)acetamide (9), and 3-amino-N-(4-methoxyphenyl)-4,6-distyrylthieno[2,3-b]pyridine-2-carboxamide (10), have been designed and synthesized in pure state, and their agricultural bioefficacy as insecticides against cowpea aphid Aphis craccivora Koch was screened. The structures of the synthesized compounds were verified by means of spectroscopic and elemental analyses. Insecticidal bioefficacy data illustrated that some compounds are excellent against cowpea aphid, and the bioefficacy of the rest of the tested compounds ranged from good to moderate against the same insects.

4.
Toxicol Rep ; 6: 100-104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622903

RESUMEN

Neonicotinoids are the most widely used from all existing pesticides. So, in purpose to discover new pesticides being more effective against the aphid, twelve heterocyclic compounds neonicotinoid analogs have been prepared in a pure state; pyrimidothienotetrahydroisoquinolines 1-12 and their toxicity as potential insecticidal agents against cowpea Aphid, Aphis craccivora Koch was screened. Their characterizations by using spectroscopic analyses were performed. The toxicity data exhibited that the 8-chloropyrimidine compound 4 is more toxic about 2-fold than a reference insecticide, acetamiprid. The other screened compounds showed weak to strong toxicological activities against cowpea aphid.

5.
J Agric Food Chem ; 62(41): 9982-6, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25226271

RESUMEN

Five pyridine derivatives, namely, N-morpholinium 7,7-dimethyl-3-cyano-4-(4'-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-2-thiolate (1), sodium 5-acetyl-3-amino-4-(4'-methoxyphenyl)-6-methylthieno[2,3-b] pyridine-2-carboxylate (2), piperidinium 3,5-dicyano-2-oxo-4-spirocyclopentane-1,2,3,4-tetrahydropyridine-6-thiolate (3), piperidinium 5-acetyl-3-cyano-4-(4'-methoxyphenyl)-6-methylpyridine-2-thiolate (4), and piperidinium 5-acetyl-4-(4'-chlorophenyl)-3-cyano-6-methyl-pyridine-2-thiolate (5) were prepared in pure state and subjected to the title study. The bioassay results indicated that the insecticidal activity of compound 1 is about 4-fold that of acetamiprid insecticide. The rest of the tested compounds possess moderate to strong aphidicidal activities.


Asunto(s)
Áfidos/efectos de los fármacos , Insecticidas/química , Insecticidas/toxicidad , Piridinas/química , Piridinas/toxicidad , Animales , Insecticidas/síntesis química , Estructura Molecular
6.
Chemosphere ; 99: 117-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24268171

RESUMEN

Equilibrium and kinetics of Cu(2+) adsorption onto soil minerals (kaolinite and hematite) in the absence and presence of humic acid have been investigated under various conditions. The influences of ionic strength, pH and solution cations on the rate of the adsorption have been studied. The rate and the amount of adsorbed Cu(2+) onto soil minerals in the absence or the presence of humic acid increased with decreasing ionic strength, increasing pH and in the presence of the background electrolyte K(+) rather than Ca(2+). Humic acid enhanced the rate and the amount of adsorbed Cu(2+) onto soil minerals. The adsorption equilibrium data showed that adsorption behavior of Cu(2+) could be described more reasonably by Langmiur adsorption isotherm than Freundlich isotherm in the absence or presence of humic acid. Pseudo first and pseudo second order models were used to evaluate the kinetic data and the rate constants. The results indicated that the adsorption of Cu(2+) onto hematite and kaolinite in the absence and presence of humic acid is more conforming to pseudo second order kinetics.


Asunto(s)
Cobre/química , Modelos Químicos , Contaminantes del Suelo/química , Suelo/química , Adsorción , Cationes/química , Cobre/análisis , Electrólitos/química , Sustancias Húmicas/análisis , Concentración de Iones de Hidrógeno , Cinética , Minerales/química , Concentración Osmolar , Contaminantes del Suelo/análisis
7.
J Phys Chem A ; 116(45): 10889-96, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23075223

RESUMEN

Kinetics of humic acid (HA) adsorption onto soil minerals (kaolinite and hematite) has been investigated under various conditions. The influence of ionic strength, pH, and solution cations on the rate of adsorption has been studied. The rate and the amount of adsorbed humic acid onto soil minerals increased with increasing ionic strength, decreasing pH, and in the presence of Ca(2+) as background electrolyte. The adsorption equilibrium data showed that adsorption behavior of humic acid could be described more reasonably by Freundlich adsorption isotherm than Langmiur adsorption isotherm. Pseudo first order and pseudo second order kinetic models were used to evaluate the kinetic data and the rate constants. The results explained that humic acid adsorption on hematite and kaolinite was more conforming with pseudo second order kinetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...