Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 642: 123143, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37330154

RESUMEN

Delivery of cancer cell membranes (CM) is a new approach for the activation of the immune system and the induction of immunotherapy of cancer. Local delivery of melanoma CM into skin can induce efficient immune stimulation of antigen presenting cells (APCs), such as dendritic cells. In the current study, fast dissolving microneedles (MNs) were developed for the delivery of melanoma B16F10 CM. Two polymers were tested for the fabrication of MNs: poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and hyaluronic acid (HA). The incorporation of CM in MNs was achieved through coating of the MNs using a multi-step layering procedure or the micromolding technique. The CM loading and its stabilization were improved by adding sugars (sucrose and trehalose) and a surfactant (Poloxamer 188), respectively. In an ex vivo experiment, both PMVE-MA and HA showed fast dissolutions (<30 s) after insertion into porcine skin. However, HA-MN showed better mechanical properties, namely improved resistance to fracture when submitted to a compression force. Overall, a B16F10 melanoma CM-dissolving MN system was efficiently developed as a promising device suggesting further studies in immunotherapy and melanoma applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Melanoma , Animales , Porcinos , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Polímeros/metabolismo , Piel/metabolismo , Membrana Celular , Ácido Hialurónico/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Agujas
2.
BMC Microbiol ; 23(1): 9, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627557

RESUMEN

Cytosine deaminase (CDA) is a prodrug mediating enzyme converting 5-flurocytosine into 5-flurouracil with profound broad-range anticancer activity towards various cell lines. Availability, molecular stability, and catalytic efficiency are the main limiting factors halting the clinical applications of this enzyme on prodrug and gene therapies, thus, screening for CDA with unique biochemical and catalytic properties was the objective. Thermotolerant/ thermophilic fungi could be a distinctive repertoire for enzymes with affordable stability and catalytic efficiency. Among the recovered thermotolerant isolates, Aspergillus niger with optimal growth at 45 °C had the highest CDA productivity. The enzyme was purified, with purification 15.4 folds, molecular mass 48 kDa and 98 kDa, under denaturing and native PAGE, respectively. The purified CDA was covalently conjugated with dextran with the highest immobilization yield of 75%. The free and CDA-dextran conjugates have the same optimum pH 7.4, reaction temperature 37 °C, and pI 4.5, and similar response to the inhibitors and amino acids suicide analogues, ensuring the lack of effect of dextran conjugation on the CDA conformational structure. CDA-Dextran conjugates had more resistance to proteolysis in response to proteinase K and trypsin by 2.9 and 1.5 folds, respectively. CDA-Dextran conjugates displayed a dramatic structural and thermal stability than the free enzyme, authenticating the acquired structural and catalytic stability upon dextran conjugation. The thermal stability of CDA was increased by about 1.5 folds, upon dextran conjugation, as revealed from the half-life time (T1/2). The affinity of CDA-conjugates (Km 0.15 mM) and free CDA (Km 0.22 mM) to deaminate 5-fluorocytosine was increased by 1.5 folds. Upon dextran conjugation, the antiproliferative activity of the CDA towards the different cell lines "MDA-MB, HepG-2, and PC-3" was significantly increased by mediating the prodrug 5-FC. The CDA-dextran conjugates strongly reduce the tumor size and weight of the Ehrlich cells (EAC), dramatically increase the titers of Caspase-independent apoptotic markers PARP-1 and AIF, with no cellular cytotoxic activity, as revealed from the hematological and biochemical parameters.


Asunto(s)
Citosina Desaminasa , Profármacos , Humanos , Aspergillus niger , Citosina Desaminasa/metabolismo , Dextranos/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Péptido Hidrolasas/metabolismo , Profármacos/farmacología , Proteolisis , Línea Celular Tumoral
3.
Heliyon ; 8(9): e10660, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36164544

RESUMEN

Cytosine deaminase (CDA) is a non-mammalian enzyme with powerful activity in mediating the prodrug 5-fluorcytosine (5-FC) into toxic drug 5-fluorouracil (5-FU), as an alternative directed approach for the traditional chemotherapies and radiotherapies of cancer. This enzyme has been frequently reported and characterized from various microorganisms. The therapeutic strategy of 5-FC-CDA involves the administration of CDA followed by the prodrug 5-FC injection to generate cytotoxic 5-FU. The antiproliferative activity of CDA-5-FC elaborates from the higher activity of uracil pathway in tumor cells than normal ones. The main challenge of the therapeutic drug 5-FU are the short half-life, lack of selectivity and emergence of the drug resistance, consistently to the other chemotherapies. So, mediating the 5-FU to the tumor cells by CDA is one of the most feasible approaches to direct the drug to the tumor cells, reducing its toxic effects and improving their pharmacokinetic properties. Nevertheless, the catalytic efficiency, stability, antigenicity and targetability of CDA-5-FC, are the major challenges that limit the clinical application of this approach. Thus, exploring the biochemical properties of CDA from various microorganisms, as well as the approaches for localizing the system of CDA-5-FC to the tumor cells via the antibody directed enzyme prodrug therapy (ADEPT) and gene directed prodrug therapy (GDEPT) were the objectives of this review. Finally, the perspectives for increasing the therapeutic efficacy, and targetability of the CDA-5-FC system were described.

4.
Adv Drug Deliv Rev ; 174: 576-612, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019958

RESUMEN

Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.


Asunto(s)
Nanopartículas , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Animales , Técnicas de Transferencia de Gen , Humanos , Oligonucleótidos/administración & dosificación
5.
Int J Pharm ; 593: 120123, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33278496

RESUMEN

Multifunctional gelatin nanoparticles modified by NIR-emitting gold/silver alloy nanoclusters and loaded with ovalbumin (OVA) as a model antigen were developed. Two different designs of nanoparticles were introduced; positively charged NPs with OVA displayed over the surface (S-NPs) versus OVA encapsulated in the NPs' matrix and the surface is functionalized by dextran (Dex-NPs) for dendritic cell targeting. The nanoparticles showed average particle sizes of 210 and 305 nm and zeta potentials of +25.6 and -23.9 mV, for S-NPs and Dex-NPs, respectively. Both types of NPs succeeded to induce maturation of murine bone marrow-derived dendritic cells (BMDCs) as indicated by the upregulated surface expression of MHC-II and co-stimulatory molecules CD86, CD80 and CD40. Dex-NPs induced no cytotoxicity in BMDCs, in contrast to S-NPs. Functionalization of NPs with dextran increased their uptake by BMDCs, enhanced secretion of immune stimulatory chemokines, and boosted their T cell stimulation capacity. Co-culture of NP loaded BMDCs with OVA-specific CD4 or CD8 T cells, induced enhanced T cell proliferation and release of IL-2 from both CD8 and CD4 cells and IFN-γ from CD8 T cells. This highlights the potential of the developed NPs as vaccines for inducing T helper 1 type CD4 as well as CD8 responses, such as vaccines for cancer or viral infections.


Asunto(s)
Células Dendríticas , Nanopartículas , Animales , Antígenos , Inmunidad , Ratones , Ratones Endogámicos C57BL , Ovalbúmina
6.
J Mater Chem B ; 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32901648

RESUMEN

The interest in using gold nanoclusters (AuNCs) as imaging probes is growing, covering wide ranges of applications. The stabilization of AuNCs with protein ligands enhances their biomedical and pharmaceutical applications. This is due to the biocompatibility, water solubility and bioactivity of proteins. Different factors can control the optical properties of AuNCs such as protein size, amino acids content and conformational structure. Controlling the synthesis conditions can result in tuning the AuNCs excitation, emission, fluorescence intensity and physicochemical properties to fulfill different applications. NIR-emitting protein-stabilized AuNCs are promising as imaging agents for targeting and visualization of cancer in vitro and in vivo. They are promising to be included as an important part of multifunctional theranostic nanosystems, due to their potential dual functions as imaging and photosensitizing agent for photodynamic therapy. Additionally, the protein around AuNCs represents a rich environment of active functional groups that are susceptible for conjugation with various biomolecules. Protein-AuNCs can act as fluorescent probes for rapid and selective analysis of different analytes in solution, cells or biological fluids. In conclusion, the variability of protein-AuNC applications can advance research in different biomedical and pharmaceutical fields.

7.
Eur J Pharm Biopharm ; 154: 166-174, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32659323

RESUMEN

3D printing of master molds for soft lithography-based fabrication of microneedles (MNs) is a cost effective, easy and fast method for producing MNs with variable designs. Deviating from the classical geometries of MNs, 'tanto blade'-inspired MNs showed effective skin penetration, acting as sharp structures with low insertion force of 10.6 N, which is sufficient for manual insertion. Additionally, hydrophilic, fluorescent noble metal nanocluster-modified gelatin nanocarriers were loaded in polyvinyl alcohol/sucrose MNs to act as a novel potential theranostic system emitting light in the near-infrared (λem = ~700 nm). Nanoparticles (NPs) distribution within the MNs and release have been monitored using confocal laser scanning microscopy by means of spectral analysis and linear unmixing. Furthermore, the MNs patch was modified by carving a channel at each of the four corners of the patch. This facilitated the separation process of MNs from the patch base into skin, when 15 µL phosphate buffered saline was applied through each channel post-skin insertion of the MNs. Then, the patch base can be removed easily leaving the implanted MNs inside the skin for further release of the NP cargo. This successfully reduced the application time to 1 min for enhanced patient compliance.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Nanopartículas del Metal/administración & dosificación , Microinyecciones/instrumentación , Agujas , Impresión Tridimensional/instrumentación , Piel/efectos de los fármacos , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Humanos , Microinyecciones/métodos , Técnicas de Cultivo de Órganos , Piel/metabolismo , Factores de Tiempo
8.
Sci Rep ; 10(1): 176, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932640

RESUMEN

Clobetasol propionate (CLO) is a potent glucocorticoid used to treat inflammation-based skin, scalp, and hair disorders. In such conditions, hair follicles (HF) are not only the target site but can also act as drug reservoirs when certain formulations are topically applied. Recently, we have demonstrated nanostructured lipid carriers (NLC) containing CLO presenting epidermal-targeting potential. Here, the focus was evaluating the HF uptake provided by such nanoparticles in comparison to a commercial cream and investigating the influence of different physical stimuli [i.e., infrared (IR) irradiation (with and without metallic nanoparticles-MNP), ultrasound (US) (with and without vibration) and mechanical massage] on their follicular targeting potential. Nanosystems presented sizes around 180 nm (PdI < 0.2) and negative zeta potential. The formulation did not alter skin water loss measurements and was stable for at least 30 days at 5 °C. Nanoparticles released the drug in a sustained fashion for more than 3 days and increased passively about 40 times CLO follicular uptake compared to the commercial cream. Confocal images confirmed the enhanced follicular delivery. On the one hand, NLC application followed by IR for heat generation showed no benefit in terms of HF targeting even at higher temperatures generated by metallic nanoparticle heating. On the other hand, upon US treatment, CLO retention was significantly increased in deeper skin layers. The addition of mechanical vibration to the US treatment led to higher follicular accumulation compared to passive exposure to NLC without stimuli. However, from all evaluated stimuli, manual massage presented the highest follicular targeting potential, driving more than double the amount of CLO into the HF than NLC passive application. In conclusion, NLC showed great potential for delivering CLO to HF, and a simple massage was capable of doubling follicular retention.


Asunto(s)
Clobetasol/administración & dosificación , Portadores de Fármacos/química , Folículo Piloso/metabolismo , Lípidos/química , Nanopartículas/administración & dosificación , Absorción Cutánea , Piel/metabolismo , Clobetasol/química , Folículo Piloso/efectos de los fármacos , Humanos , Rayos Infrarrojos , Nanopartículas/química , Piel/efectos de los fármacos , Estrés Mecánico , Ultrasonido
9.
Adv Healthc Mater ; 8(24): e1900993, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31769613

RESUMEN

Gold nanocluster (AuNC) synthesis using a well-distinguished polymer for nanoparticle-mediated drug delivery paves the way for developing efficient theranostics based on pharmaceutically accepted materials. Gelatin-stabilized AuNCs are synthesized and modified by glutathione for tuning the emission spectra. Addition of silver ions enhances the fluorescence, reaching also high quantum yield (26.7%). A simplified model can be proposed describing the nanoclusters' properties-structure relationship based on X-ray photoelectron spectroscopy data and synthesis sequence. Furthermore, these modifications improve fluorescence stability toward pH changes and enzymatic degradation, offering different AuNCs for various applications. The impact of nanocluster formation on gelatin structure integrity is investigated by Fourier transform infrared spectrometry and matrix-assisted laser desorption/ionization time of flight mass spectroscopy, being important to further formulate gelatin nanoparticles (GNPs). The 218 nm-sized NPs show no cytotoxicity up to 600 µg mL-1 and are imaged in skin, as a challenging autofluorescent tissue, by confocal microscopy, when transcutaneously delivered using dissolving microneedles. Linear unmixing allows simultaneous imaging of AuNCs-GNPs and skin with accurate signal separation. This underlines the great potential for bioimaging of this system to better understand nanomaterials' behavior in tissue. Additionally, it is drug delivery system also potentially serving as a theranostic system.


Asunto(s)
Gelatina/química , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Polímeros/química , Microscopía Confocal , Espectroscopía de Fotoelectrones , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
10.
Int J Pharm ; 520(1-2): 139-148, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28163229

RESUMEN

Electrospun nanofibers (NFs) as drug delivery/tissue regeneration template and antimicrobial photodynamic therapy (APDT) have been widely investigated as two different approaches to enhance wound healing. In the present study, the two approaches were combined in a single platform for greater healing enhancement potentials. Composite photosensitizer-eluting NFs were developed using a polyhydrohybutyrate/polyethylene glycol (60:40 PHB/PEG) polymer blend and methylene blue (MB) as antimicrobial photosensitizer (PS). NFs protected the photoactivity of entrapped MB, enhanced its photodynamic activity against two wound bacteria, Staphylococcus aureus standard strain (SAst) and MRSA and sustained MB release allowing for flexible PS dosing and irradiation schedules. This combined PS-eluting NFs/APDT approach proved effective in the treatment of SAst-inoculated excision wounds in a challenging immunocompromized rat model. This was verified by morphological, morphometric, microbiological, histopathological and RT-PCR studies. Inclusion of PS-eluting NFs as an additional active component of APDT generates a combined non-antibiotic antimicrobial/cell regeneration approach with great potentials for wound healing and other biomedical applications.


Asunto(s)
Nanofibras/administración & dosificación , Nanofibras/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacocinética , Cicatrización de Heridas/efectos de los fármacos , Animales , Liberación de Fármacos , Hidroxibutiratos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Azul de Metileno/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Poliésteres/química , Polietilenglicoles/química , Prohibitinas , Ratas , Staphylococcus aureus/efectos de los fármacos
11.
J Biomater Sci Polym Ed ; 27(10): 1029-44, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27093975

RESUMEN

In the quest for barrier membranes for the prevention of post-surgical tissue adhesions, polymer matrices may provide a platform of biomaterials with versatile properties. However, the relationship between the anti-adhesion effects of different polymer matrices and their physicochemical and structural properties is not yet adequately understood. In a preclinical study using a rat cecum model, we directly compared the anti-adhesion potential of polyhydroxybutyrate (PHB) electrospun nanofibrous versus cast film matrices loaded with methylene blue (MB) as antioxidant adhesion inhibitor. PHB retained MB presumably forming MB-bioactivated matrices. In the preclinical study, quantitative morphologic assessment in addition to histopathologic and SEM examinations 14 days post-surgery indicated that plain PHB NFs and MB-PHB NFs, moderately enhanced cecal wall healing and inhibited adhesion formation. In contrast, reshaping PHB as cast films, significantly enhanced healing, reduced adhesion bands and prevented inter-visceral adhesions. Cast films also inhibited tissue attachment to the matrix recovered 14 days post-surgery. Both PHB matrix types reduced tissue inflammation. Despite tissue anti-adhesion potential of individual matrix components, modulation of the micro-architectural properties generated polymer barriers with varying tissue anti-adhesion and healing potentials, the MB-loaded cast film achieving the best outcome.


Asunto(s)
Azul de Metileno/farmacología , Nanofibras/química , Adherencias Tisulares/prevención & control , Cicatrización de Heridas , Animales , Materiales Biocompatibles/química , Ciego/patología , Ciego/cirugía , Femenino , Microscopía Electrónica de Rastreo , Polímeros/farmacología , Prohibitinas , Ratas , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...