Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16808, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039161

RESUMEN

A new modified cellulose with diaminoguanidine (Cel-Gua) synthesized for specific recovery of Cu (II), Cd (II), and Hg (II) from the alum sample. Cellulose was silanized by 3-chloropropyltrimethoxysilane and then was modified with diaminoguanidine to obtain N-donor chelating fibers. Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential, electrons disperse X-ray analysis, elemental analyses (C, H and N), and thermogravimetric analysis were used for characterization. Factors influencing the adsorption were thoroughly examined. Under the optimal conditions, the Cel-Gua sorbent displayed maximum adsorption capacities of 94.33, 112.10 and 95.78 mg/g for Cu (II), Cd (II), and Hg (II), respectively. The sorption process of metal ions is equipped by kinetic model PSO and Langmuir adsorption isotherm. The calculated thermodynamic variables confirmed that the adsorption of Cu (II), Cd (II) and Hg (II) by Cel-Gua sorbent is a spontaneous and exothermic process. In our study, we used the molecular operating environment software to conduct molecular docking simulations on the Cel-Gua compound. The results of the docking simulations showed that the Cel-Gua compound displayed greater potency and a stronger affinity for the Avr2 effector protein derived from Fusarium oxysporum, a fungal plant pathogen (code 5OD4). The adsorbent was stable for 7 cycles, thus allowing its safe reutilization.


Asunto(s)
Cadmio , Celulosa , Cobre , Simulación del Acoplamiento Molecular , Celulosa/química , Cobre/química , Cadmio/química , Adsorción , Mercurio/química , Compuestos de Alumbre/química , Cinética , Termodinámica , Espectroscopía Infrarroja por Transformada de Fourier , Quelantes/química
2.
Appl Radiat Isot ; 210: 111357, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788340

RESUMEN

Solidification/Stabilization (S/S) of spent radioactive ion exchange resins (IER) is one of many critical problems facing developing nuclear industries all over the world. Immobilization technology using Ordinary Portland Cement (OPC) as an inert matrix, has been widely applied for the solidification/stabilization of spent ion exchange resin. In this study incorporation of simulated IER into cement matrix and characterization of the final solid waste form (FWF) had been searched practically in laboratory scale experiments. Factors that can affect the properties of the FWF including the water/cement (w/c) ratios and the resin concentration were studied systematically. Mechanical integrities, thermal analysis, and mass loss during hardening and curing for 28 days were evaluated for FWF hard blocks. Scanning Electron Microscope (SEM) and X-Ray Diffraction (X-RD) examinations were performed to investigate the internal architecture of the FWF. Moreover, the heat of cement hydration reactions was recorded during the IER solidification process. Based on the experimental results obtained, it is worth to state that according to its acceptable characteristics and advantages of cement as an inert matrix, it can be suggested safely for the immobilization of untreated spent radioactive ion exchange resins.

3.
BMC Genomics ; 25(1): 162, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331729

RESUMEN

In this work, a novel isatin-Schiff base L2 had been synthesized through a simple reaction between isatin and 2-amino-5-methylthio-1,3,4-thiadiazole. The produced Schiff base L2 was then subjected to a hydrothermal reaction with cerium chloride to produce the cerium (III)-Schiff base complex C2. Several spectroscopic methods, including mass spectra, FT-IR, elemental analysis, UV-vis, 13C-NMR, 1H-NMR, Thermogravimetric Analysis, HR-TEM, and FE-SEM/EDX, were used to completely characterize the produced L2 and C2. A computer simulation was performed using the MOE software program to find out the probable biological resistance of studied compounds against the proteins in some types of bacteria or fungi. To investigate the interaction between the ligand and its complex, we conducted molecular docking simulations using the molecular operating environment (MOE). The docking simulation findings revealed that the complex displayed greater efficacy and demonstrated a stronger affinity for Avr2 effector protein from the fungal plant pathogen Fusarium oxysporum (code 5OD4) than the original ligand. The antibacterial activity of the ligand and its Ce3+ complex were applied in vitro tests against different microorganism. The study showed that the complex was found to be more effective than the ligand.


Asunto(s)
Cerio , Isatina , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Isatina/farmacología , Isatina/química , Cerio/farmacología , Bases de Schiff/farmacología , Bases de Schiff/química , Simulación por Computador , Ligandos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
4.
J Fungi (Basel) ; 9(2)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36836358

RESUMEN

Sweet pepper (Capsicum annuum L.), also known as bell pepper, is one of the most widely grown vegetable crops worldwide. It is attacked by numerous phytopathogenic fungi, such as Fusarium equiseti, the causal agent of Fusarium wilt disease. In the current study, we proposed two benzimidazole derivatives, including 2-(2-hydroxyphenyl)-1-H benzimidazole (HPBI) and its aluminum complex (Al-HPBI complex), as potential control alternatives to F. equiseti. Our findings showed that both compounds demonstrated dose-dependent antifungal activity against F. equiseti in vitro and significantly suppressed disease development in pepper plants under greenhouse conditions. According to in silico analysis, the F. equiseti genome possesses a predicted Sterol 24-C-methyltransferase (FeEGR6) protein that shares a high degree of homology with EGR6 from F. oxysporum (FoEGR6). It is worth mentioning that molecular docking analysis confirmed that both compounds can interact with FeEGR6 from F. equiseti as well as FoEGR6 from F. oxysporum. Moreover, root application of HPBI and its aluminum complex significantly enhanced the enzymatic activities of guaiacol-dependent peroxidases (POX), polyphenol oxidase (PPO), and upregulated four antioxidant-related enzymes, including superoxide dismutase [Cu-Zn] (CaSOD-Cu), L-ascorbate peroxidase 1, cytosolic (CaAPX), glutathione reductase, chloroplastic (CaGR), and monodehydroascorbate reductase (CaMDHAR). Additionally, both benzimidazole derivatives induced the accumulation of total soluble phenolics and total soluble flavonoids. Collectively, these findings suggest that the application of HPBI and Al-HPBI complex induce both enzymatic and nonenzymatic antioxidant defense machinery.

5.
Plants (Basel) ; 11(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145818

RESUMEN

Sweet pepper (Capsicum annuum L.) is one of the most widely produced vegetable plants in the world. Fusarium wilt of pepper is one of the most dangerous soil-borne fungal diseases worldwide. Herein, we investigated the antifungal activities and the potential application of two chalcone derivatives against the phytopathogenic fungus, Fusarium equiseti, the causal agent of Fusarium wilt disease in vitro and in vivo. The tested compounds included 3-(4-dimethyl amino-phenyl)-1-{6-[3-(4 dimethyl amino-phenyl)-a cryloyl]-pyridin-2-yl}-propanone (DMAPAPP) and its metal complex with ruthenium III (Ru-DMAPAPP). Both compounds had potent fungistatic activity against F. equiseti and considerably decreased disease progression. The tested compounds enhanced the vegetative growth of pepper plants, indicating there was no phytotoxicity on pepper plants in greenhouse conditions. DMAPAPP and Ru-DMAPAPP also activated antioxidant defense mechanisms that are enzymatic, including peroxidase, polyphenole oxidase, and catalase, and non-enzymatic, such as total soluble phenolics and total soluble flavonoids. DMAPAPP and Ru-DMAPAPP also promoted the overexpression of CaCu-SOD and CaAPX genes. However, CaGR and CaMDHAR were downregulated. These results demonstrate how DMAPAPP and Ru-DMAPAPP could be employed as a long-term alternative control approach for Fusarium wilt disease as well as the physiological and biochemical mechanisms that protect plants.

6.
Int J Biomater ; 2021: 1925388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34725548

RESUMEN

OBJECTIVES: To synthesize and characterize a novel Al+3 complex with 2-(2-hydroxyphenyl)-1H-benzimidazole (HL) to be added to a restorative glass ionomer cement (GIC) to enhance its antimicrobial activities and to evaluate the Vickers microhardness (HV) and fluoride release (FR) of the modified GIC. MATERIALS AND METHODS: Al+3 complex was synthesized by the addition of 1 mmol (0.210 g) of HL to 1 mmol (0.342 g) of aluminum sulfate in ethanol. The resulting solution was then refluxed under stirring for 24 h and then collected by filtration and dried in a vacuum desiccator over an anhydrous CaCl2. Characterization of Al+3 complex was carried out by Fourier transform infrared spectroscopy (FTIR), elemental microanalysis, thermal gravimetric analysis (TGA), molar conductance, 1H NMR spectra, and electron impact-mass spectrometry. The antimicrobial activity of Al+3 complex-modified GIC (Al-GIC) was studied by the "cut plug method" against Gram-negative bacteria (Acinetobacter baumannii) and Gram-positive bacteria (Staphylococcus aureus, Enterococcus, and Streptococcus mutants) and fungi (Candida albicans). HV was evaluated by a digital microhardness tester (Zwick/Roell, Indentec, ZHVµ-S, West Midlands, England). Fluoride levels in ppm were obtained using the ion-selective electrode connected to a digital meter. A one-way ANOVA and Bonferroni test were used to analyze the data with the significance level established at p ≤ 0.05. RESULTS: Synthesis of Al+3 complex was confirmed by FTIR, elemental microanalysis TGA, molar conductance, 1H NMR spectra, and electron impact-mass spectrometry. Al-GICs exhibited an enhanced antibacterial activity against all studied microorganisms as confirmed by the growth of inhibition zones compared to control GIC (C-GIC). Though there was a slight reduction in HV and FR with increasing the added percent of Al+3 complex, no significant differences were found between the studied groups. CONCLUSIONS: Addition of Al+3 complex to GIC powder enhanced the antimicrobial activity of GIC materials. As there was a negligible insignificant reduction in HV and FR upon the addition of Al+3 complex, Al-GICs can be used with a guaranteed degree of clinical success.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 137: 423-31, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25238180

RESUMEN

The chalcone 3-[4'-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4'-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, (1)H NMR, (13)C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH=3.2 was determined to be 9.9×10(4) and 5.2×10(4) respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM(+) force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP.


Asunto(s)
Antioxidantes/farmacología , Chalcona/química , Cobre/química , Furanos/farmacología , Piridinas/farmacología , Antioxidantes/química , Coloides/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Estabilidad de Medicamentos , Furanos/química , Cinética , Espectroscopía de Resonancia Magnética , Nanopartículas del Metal/química , Modelos Moleculares , Estructura Molecular , Piridinas/química , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 78(4): 1227-33, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21300564

RESUMEN

The interaction of organic acceptors such as tetrafluoro-1,4-benzoquinone (p-TFQ), tetrachloro-1,4-benzoquinone (p-TCQ), tetrachloro-1,2-benzoquinone (o-TCQ), tetrabromo-1,4-benzoquinone (p-TBQ), tetrabromo-1,2-benzoquinone (o-TBQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) with (4-dimethylamino-benzylidene)-(4,6-dimethyl-pyrimidin-2-yl)-amine (SB) as donor is studied spectrophotometrically and fluoremetrically in dichloromethane and trichloromethane. The association constant (K), thermodynamic parameters (ΔG°, ΔH° and ΔS°), oscillator strength (f), transition dipole moment (µ) and stoichiometric ratio are calculated using Benezi-Hildbrand's, Job and straight-line methods, respectively. The results reveal that the interaction between the donor and acceptors is due to π-π* transitions by the formation of radical ion pairs. The fluorescence quenching of SB with different organic acceptors is investigated. The results reveal that the fluorescence quenching obeys the static type mechanism via charge transfer complex formation in the ground state. The effect of temperature on the equilibrium constants of the CT complexes is also studied.


Asunto(s)
Aminas/química , Benzoquinonas/química , Electrones , Fluorescencia , Espectrofotometría/métodos , Cloroformo/química , Cloruro de Metileno/química , Estructura Molecular , Solventes/química , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA