Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11883, 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37482593

RESUMEN

Aqueous-phase catalyzed reduction of organic contaminants via zerovalent copper nanoparticles (nCu0), coupled with borohydride (hydrogen donor), has shown promising results. So far, the research on nCu0 as a remedial treatment has focused mainly on contaminant removal efficiencies and degradation mechanisms. Our study has examined the effects of Cu0/Cun+ ratio, surface poisoning (presence of chloride, sulfides, humic acid (HA)), and regeneration of Cu0 sites on catalytic dechlorination of aqueous-phase 1,2-dichloroethane (1,2-DCA) via nCu0-borohydride. Scanning electron microscopy confirmed the nano size and quasi-spherical shape of nCu0 particles. X-ray diffraction confirmed the presence of Cu0 and Cu2O and x-ray photoelectron spectroscopy also provided the Cu0/Cun+ ratios. Reactivity experiments showed that nCu0 was incapable of utilizing H2 from borohydride left over during nCu0 synthesis and, hence, additional borohydride was essential for 1,2-DCA dechlorination. Washing the nCu0 particles improved their Cu0/Cun+ ratio (1.27) and 92% 1,2-DCA was removed in 7 h with kobs = 0.345 h-1 as compared to only 44% by unwashed nCu0 (0.158 h-1) with Cu0/Cun+ ratio of 0.59, in the presence of borohydride. The presence of chloride (1000-2000 mg L-1), sulfides (0.4-4 mg L-1), and HA (10-30 mg L-1) suppressed 1,2-DCA dechlorination; which was improved by additional borohydride probably via regeneration of Cu0 sites. Coating the particles decreased their catalytic dechlorination efficiency. 85-90% of the removed 1,2-DCA was recovered as chloride. Chloroethane and ethane were main dechlorination products indicating hydrogenolysis as the major pathway. Our results imply that synthesis parameters and groundwater solutes control nCu0 catalytic activity by altering its physico-chemical properties. Thus, these factors should be considered to develop an efficient remedial design for practical applications of nCu0-borohydride.

2.
Sci Total Environ ; 765: 142722, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33268250

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are manmade, fluorinated organic chemicals which have been identified as persistent organic pollutants. PFAS have surface active properties that have made them suitable for applications in oil- and water-resistant products, as well as many firefighting foams. No on-site remediation strategies exist to treat PFAS impacted soils. Mechanochemical remediation of PFOS- and PFOA-amended sand via a planetary ball mill was studied. The effect of sand mass, KOH as a co-milling reagent, and water saturation on the degradation of PFOA and PFOS was evaluated. By 4 h of milling concentrations were reduced by up to 98% for PFOS-amended dry sand and 99% for PFOA-amended dry sand without the addition of a co-milling reagent. Water saturation was determined to be a significant hindrance on the mechanochemical destruction of PFOS and PFOA. A maximum of 89% of fluoride was recovered from PFOS-amended sand when KOH was used as a co-milling reagent. It is hypothesized that reactive particles generated from the fracture of sand grains react with PFAS molecules to initiate destruction, which can result in full defluorination. Milling experiments were also conducted on soils from a Canadian firefighting training area (FFTA), demonstrating that PFOS concentrations can be reduced by up to 96% in site soils. For the first time, ball milling for the remediation of PFAS in environmental media has been demonstrated using amended sand and legacy soils from a FFTA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA