Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 474, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811913

RESUMEN

BACKGROUND: The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS: The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS: The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.


Asunto(s)
Cobre , Enterobacter , Nanopartículas del Metal , Vicia faba , Óxido de Zinc , Vicia faba/efectos de los fármacos , Vicia faba/metabolismo , Óxido de Zinc/farmacología , Enterobacter/efectos de los fármacos , Enterobacter/metabolismo , Nanopartículas del Metal/química , Tecnología Química Verde , Nanopartículas/química , Antibacterianos/farmacología , Estrés Fisiológico/efectos de los fármacos , Antioxidantes/metabolismo , Plantones/efectos de los fármacos
2.
Burns ; 50(4): 924-935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38378390

RESUMEN

Wound healing is a physiological process that results in the reconstruction and restoration of granulation tissue, followed by scar formation. We explored the impact of fatty acids in the form of oils on wound healing since they are part of membrane phospholipids and participate in the inflammatory response. This work investigated the efficiency of fatty acids extracted from microalga Parachlorella kessleri in treating excisional wounds and burns and evaluated their antioxidant activity. The rationale behind this investigation lies in the integral role fatty acids play in membrane phospholipids and their involvement in the inflammatory response. Among different nitrogen sources, glycine showed the highest biomass and lipid productivity (0.08 g L-1 d-1 and 58.37 µgml-1 day-1, respectively). Based on the percentage of polyunsaturated fatty acids that increased by 50.38 % in the Glycine culture of P. kessleri, both total antioxidant capacity and DPPH radical scavenging activity were higher in the Glycine culture than control culture. In 30 anaesthetized male mice divided into 6 groups, using either a burn or an excision, two identical paravertebral full-thickness skin lesions were created. Either oils of P. kessleri (extracted from control and glycine culture) ointments or the vehicle (placebo cream) were applied twice daily to the excisional wounds of mice, while mebo cream was used for burn wounds as well as P. kessleri oil. P. kessleri oils (control or glycine culture) showed a significant effect on the reduction of excisional wounds and burns. Histopathological analysis showed that angiogenesis, collagen fiber formation, and epidermis creation were some of the healing indicators that improved. The key elements for this healing property are omega -3 fatty acids, and both P. kessleri oils extracted from control and glycine culture have significant wound-healing effects. Oil of glycine culture of P. kessleri, however, displayed superior results in this regard.


Asunto(s)
Antioxidantes , Quemaduras , Microalgas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Quemaduras/tratamiento farmacológico , Quemaduras/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Masculino , Ácidos Grasos/farmacología , Glicina/farmacología , Glicina/uso terapéutico , Chlorophyta , Piel/lesiones , Piel/efectos de los fármacos
3.
Biotechnol Biofuels Bioprod ; 15(1): 122, 2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36372889

RESUMEN

BACKGROUND: Microalgae, with their high adaptability to various stress conditions and rapid growth, are considered excellent biomass resources for lipid production and biodiesel feedstocks. However, lipid yield and productivity of the natural strains are common bottlenecks in their large-scale use for lipid production, which can be overcome by evolving new strains using conventional and advanced mutagenic techniques. It is challenging to generate microalgae strains capable of high lipid synthesis through natural selection. As a result, random mutagenesis is currently considered a viable option in many scenarios. The objective of this study was to explore atmospheric and room temperature plasma (ARTP) as a random mutagenesis technique to obtain high lipid-accumulating mutants of a green microalga for improved biodiesel production. RESULTS: A green microalgal species was isolated from the Chinese Yellow Sea and identified as Parachlorella kessleri (OM758328). The isolated microalga was subsequently mutated by ARTP to obtain high lipid-accumulating mutants. Based on the growth rate and lipid content, 5 mutants (named M1, M2, M4, M5, and M8) were selected from 15 pre-selected mutants. These five mutants varied in their growth rate from 0.33 to 0.68 day-1, with the lipid content varying between 0.25 g/L in M2 to 0.30 g/L in M8 at 10th day of cultivation. Among the mutants, M8 showed the maximum biomass productivity (0.046 g/L/day) and lipid productivity (20.19 mg/L/day), which were 75% and 44% higher than the wild strain, respectively. The triglyceride (TAG) content of M8 was found to be 0.56 g/L at 16th day of cultivation, which was 1.77-fold higher than that of the wild strain. Furthermore, M8 had the highest saturated fatty acids (C16-18) with the lowermost polyunsaturated fatty acid content, which are favorable properties of a biodiesel feedstock according to international standards. CONCLUSION: The mutant strain of P. kessleri developed by the ARTP technique exhibited significant improvements in biomass productivity, lipid content, and biodiesel quality. Therefore, the biomass of this mutant microalga could be a potential feedstock for biodiesel production.

4.
Sci Rep ; 10(1): 9339, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32518329

RESUMEN

Biofilm formation and hyphal growth are considered to be the most serious virulence factors of Candida species in blood causing candidemia infections, which are difficult to treat due to the spread of resistant Candida isolates to most antifungal drugs. Therefore, in this study, we investigated the effect of different types and concentrations of selected macroalgal extracts from Cladostephus spongiosus (Phaeophyta), Laurencia papillosa (Rhodophyta), and Codium arabicum (Chlorophyta) in inhibiting those virulence factors of the isolated Candida. Acetone extract of C. spongiosus (AECS) showed a stronger anticandidal activity against the selected strains than ethanol extract. Candida krusei was the highest biofilm producer among the selected isolates. AECS showed an inhibition of C. krusei biofilm formation as well as a reduction in the viability of preformed biofilms. Also, AECS reduced various sugars in the candidal exo-polysaccaride layer (EPS). Scanning electron microscopy (SEM) and light microscopic images revealed an absence of hyphae and an alteration in the morphology of biofilm cells when treated with AECS. Moreover, AECS downregulated the expression of hyphal specific genes, hyphal wall protein 1 (HWP1), Agglutinin-like protein 1 (ALS1) and fourth secreted aspartyl proteinase (SAP4), which confirmed the inhibitory effect of AECS on hyphal growth and biofilm formation. Gas chromatography-mass spectrophotometer (GC-MS) analysis of AECS showed three major compounds, which were non-existent in the ethanol extract, and might be responsible for the anticandidal activity; these revealed compounds were 4-hydroxy-4-methyl-2-pentanone, n-hexadecenoic acid, and phenol, 2-methoxy-4-(2-propenyl). These active compounds of AECS may be promising for future pharmaceutical applications in the treatment of candidemia.


Asunto(s)
Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Candida/fisiología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Algas Marinas/química , Biopelículas/crecimiento & desarrollo , Candida/crecimiento & desarrollo , Candida/metabolismo , Polisacáridos Fúngicos/biosíntesis
5.
Environ Monit Assess ; 189(7): 349, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28646435

RESUMEN

Stable colloidal silver nanoparticles (AgNPs) were synthesized using Caulerpa serrulata (green marine algae) aqueous extract as an efficient reducing and stabilizing agent. This method is considered to be a sustainable alternate to the more complicated chemical procedures. To achieve the optimization synthesis of AgNPs, several effects such as extract concentration, contact time, pH values, and temperature were examined. The synthesized AgNPs were characterized by UV-Vis spectroscopy, FT-IR, XRD, and HR-TEM. The synthesized AgNPs showed an intense surface plasmon resonance band at 412 nm at the optimal conditions (20% (v/v) extract and 95 °C). TEM reveal that higher extract concentration and higher temperature leading to the formation of spherical AgNPs with an average particle size of 10 ± 2 nm. The synthesized AgNPs showed excellent catalytic reduction activity of Congo red (CR) dye from aqueous solutions. The degradation percentage of CR with AgNPs accelerated by increasing either NaBH4 concentration or catalytic dosage. The AgNPs synthesized at higher temperature (e.g., 10Ag-95) exhibited the highest catalytic activity. The reaction kinetics was found to be pseudo first order with respect to the dye concentration. Moreover, the AgNPs displayed antibacterial activity at lower concentration against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella sp., Salmonella typhi, and Escherichia coli and may be a good alternative therapeutic approach. The outcomes of the current study confirmed that the synthesized AgNPs had an awesome guarantee for application in catalysis and wastewater treatment.


Asunto(s)
Antibacterianos/metabolismo , Caulerpa/metabolismo , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Catálisis , Monitoreo del Ambiente , Escherichia coli/efectos de los fármacos , Tamaño de la Partícula , Extractos Vegetales/química , Pseudomonas aeruginosa , Plata/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...