Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34200607

RESUMEN

Makkah city, Kingdom of Saudi Arabia (KSA), contains many of the world's mosquito vectors of parasitic and arboviral disease and is the site of the Hajj mass gathering. As such there is a risk of exportation and globalization of vector-borne viruses, including the re-emerging Zika virus (ZIKV). There was international concern regarding the introduction of ZIKV to KSA and potential international spread of the virus following the 2016 Hajj which took place few days after the Rio summer Olympics at the height of the ZIKV pandemic. We aimed to detect flaviviruses, including ZIKV, circulating among mosquito hosts in the city of Makkah during and post the 2016 Hajj pilgrimage. Mosquitos (adults and larvae) were sampled from 15 sites in Makkah city during and post the 2016 Hajj and identified to species by morphological keys. Mosquitos were pooled according to date of collection, location, and species. A Pan-Flaviviruses RT-PCR assay that enables identification of 51 flaviviruses species and three tentative species was used to detect flavivirus RNA directly from mosquito homogenates. Between the 10 September and 6 October 2016, 9412 female mosquitos were collected. Of these, 81.3% were Aedes aegypti, 18.6% were Culex species, and 0.1% were Anopheles species. Of the total 493 mosquito pools generated, 242 (49%) were positive by the Pan-Flaviviruses primer set. Sequence analysis revealed that none of the mosquitos carried a pathogenic flavivirus, including ZIKV, but were infected with a novel insect-specific flavivirus. We found no pathogenic flaviviruses circulating in Makkah city during and post the 2016 Hajj and no evidence of introduction of ZIKV through the pilgrimage. Enhanced vector-borne diseases surveillance, prevention, and control are crucial in KSA especially during international mass gatherings such as the annual Hajj to prevent outbreaks and the spread of viruses with epidemic and pandemic potentials.


Asunto(s)
Aedes , Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Flavivirus/genética , Mosquitos Vectores , Arabia Saudita/epidemiología , Virus Zika/genética , Infección por el Virus Zika/epidemiología
2.
BMC Med ; 16(1): 98, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940950

RESUMEN

Malaria at international borders presents particular challenges with regards to elimination. International borders share common malaria ecologies, yet neighboring countries are often at different stages of the control-to-elimination pathway. Herein, we present a case study on malaria, and its control, at the border between Saudi Arabia and Yemen. Malaria program activity reports, case data, and ancillary information have been assembled from national health information systems, archives, and other related sources. Information was analyzed as a semi-quantitative time series, between 2000 and 2017, to provide a plausibility framework to understand the possible contributions of factors related to control activities, conflict, economic development, migration, and climate. The malaria recession in the Yemeni border regions of Saudi Arabia is a likely consequence of multiple, coincidental factors, including scaled elimination activities, cross-border vector control, periods of low rainfall, and economic development. The temporal alignment of many of these factors suggests that economic development may have changed the receptivity to the extent that it mitigated against surges in vulnerability posed by imported malaria from its endemic neighbor Yemen. In many border areas of the world, malaria is likely to be sustained through a complex congruence of factors, including poverty, conflict, and migration.


Asunto(s)
Desarrollo Económico/tendencias , Malaria/epidemiología , Emigración e Inmigración , Humanos , Arabia Saudita/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...