Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 69: 302-312, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958914

RESUMEN

Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways' side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.


Asunto(s)
Redes y Vías Metabólicas , Proteínas de Ciclo Celular , Bases de Datos Factuales , Escherichia coli , Redes y Vías Metabólicas/genética , Metaboloma , Biología Sintética
2.
mSphere ; 3(2)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695623

RESUMEN

Due to a lack of effective immune clearance, the airways of cystic fibrosis patients are colonized by polymicrobial communities. One of the most widespread and destructive opportunistic pathogens is Pseudomonas aeruginosa; however, P. aeruginosa does not colonize the airways alone. Microbes that are common in the oral cavity, such as Rothia mucilaginosa, are also present in cystic fibrosis patient sputum and have metabolic capacities different from those of P. aeruginosa Here we examine the metabolic interactions of P. aeruginosa and R. mucilaginosa using stable-isotope-assisted metabolomics. Glucose-derived 13C was incorporated into glycolysis metabolites, namely, lactate and acetate, and some amino acids in R. mucilaginosa grown aerobically and anaerobically. The amino acid glutamate was unlabeled in the R. mucilaginosa supernatant but incorporated the 13C label after P. aeruginosa was cross-fed the R. mucilaginosa supernatant in minimal medium and artificial-sputum medium. We provide evidence that P. aeruginosa utilizes R. mucilaginosa-produced metabolites as precursors for generation of primary metabolites, including glutamate.IMPORTANCEPseudomonas aeruginosa is a dominant and persistent cystic fibrosis pathogen. Although P. aeruginosa is accompanied by other microbes in the airways of cystic fibrosis patients, few cystic fibrosis studies show how P. aeruginosa is affected by the metabolism of other bacteria. Here, we demonstrate that P. aeruginosa generates primary metabolites using substrates produced by another microbe that is prevalent in the airways of cystic fibrosis patients, Rothia mucilaginosa These results indicate that P. aeruginosa may get a metabolic boost from its microbial neighbor, which might contribute to its pathogenesis in the airways of cystic fibrosis patients.


Asunto(s)
Coinfección/metabolismo , Micrococcaceae/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Acetatos/metabolismo , Radioisótopos de Carbono , Medios de Cultivo/farmacología , Fibrosis Quística/microbiología , Ácido Glutámico/metabolismo , Humanos , Ácido Láctico/metabolismo , Metabolómica , Interacciones Microbianas/fisiología , Micrococcaceae/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Sistema Respiratorio/microbiología
3.
Biosci Rep ; 38(3)2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29654173

RESUMEN

NAD(P)H-hydrate epimerase (EC 5.1.99.6) is known to help repair NAD(P)H hydrates (NAD(P)HX), which are damage products existing as R and S epimers. The S epimer is reconverted to NAD(P)H by a dehydratase; the epimerase facilitates epimer interconversion. Epimerase deficiency in humans causes a lethal disorder attributed to NADHX accumulation. However, bioinformatic evidence suggest caution about this attribution by predicting that the epimerase has a second function connected to vitamin B6 (pyridoxal 5'-phosphate and related compounds). Specifically, (i) the epimerase is fused to a B6 salvage enzyme in plants, (ii) epimerase genes cluster on the chromosome with B6-related genes in bacteria, and (iii) epimerase and B6-related genes are coexpressed in yeast and Arabidopsis The predicted second function was explored in Escherichia coli, whose epimerase and dehydratase are fused and encoded by yjeF The putative NAD(P)HX epimerase active site has a conserved lysine residue (K192 in E. coli YjeF). Changing this residue to alanine cut in vitro epimerase activity by ≥95% but did not affect dehydratase activity. Mutant cells carrying the K192A mutation had essentially normal NAD(P)HX dehydratase activity and NAD(P)HX levels, showing that the mutation had little impact on NAD(P)HX repair in vivo However, these cells showed metabolome changes, particularly in amino acids, which exceeded those in cells lacking the entire yjeF gene. The K192A mutant cells also had reduced levels of 'free' (i.e. weakly bound or unbound) pyridoxal 5'-phosphate. These results provide circumstantial evidence that the epimerase has a metabolic function beyond NAD(P)HX repair and that this function involves vitamin B6.


Asunto(s)
Fosfato de Piridoxal/metabolismo , Racemasas y Epimerasas/química , Vitamina B 6/química , Arabidopsis/enzimología , Dominio Catalítico , Secuencia Conservada/genética , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Mutación , NAD , NADP , Fosfato de Piridoxal/química , Racemasas y Epimerasas/deficiencia , Racemasas y Epimerasas/genética , Saccharomyces cerevisiae/enzimología , Estereoisomerismo , Vitamina B 6/genética
4.
Expert Rev Respir Med ; 12(6): 461-473, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575963

RESUMEN

INTRODUCTION: Asthma manifests as chronic airflow obstruction with persistent inflammation and airway hyperresponsiveness. The immunomodulatory and anti-inflammatory properties of the HMG-CoA reductase (HMGCR) inhibitors (a.k.a. statins), suggest a therapeutic role in chronic inflammatory lung diseases. However, despite positive laboratory investigations and promising epidemiological data, clinical trials using statins for the treatment of asthma have yielded conflicting results. Inadequate statin levels in the airway compartment could explain these findings. Areas covered: HMGCR is in the mevalonate (MA) pathway and MA signaling is fundamental to lung biology and asthma. This article will discuss clinical trials of oral statins in asthma, review lab investigations relevant to the systemic versus inhaled administration of statins, address the advantages and disadvantages of inhaled statins, and answer the question: is there a role for inhaled statins in the treatment of asthma? Expert commentary: If ongoing investigations show that oral administration of statins has no clear clinical benefits, then repurposing statins for delivery via inhalation is a logical next step. Inhalation of statins bypasses first-pass metabolism by the liver, and therefore, allows for delivery of significantly lower doses to the airways at greater potency. Statins could become the next major class of novel inhalers for the treatment of asthma.


Asunto(s)
Asma/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Administración por Inhalación , Administración Oral , Animales , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Pulmón/química , Pulmón/patología , Espectrometría de Masas , Ácido Mevalónico/metabolismo
5.
J Biol Chem ; 292(39): 16360-16367, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28830929

RESUMEN

5-Oxoproline (OP) is well-known as an enzymatic intermediate in the eukaryotic γ-glutamyl cycle, but it is also an unavoidable damage product formed spontaneously from glutamine and other sources. Eukaryotes metabolize OP via an ATP-dependent 5-oxoprolinase; most prokaryotes lack homologs of this enzyme (and the γ-glutamyl cycle) but are predicted to have some way to dispose of OP if its spontaneous formation in vivo is significant. Comparative analysis of prokaryotic genomes showed that the gene encoding pyroglutamyl peptidase, which removes N-terminal OP residues, clusters in diverse genomes with genes specifying homologs of a fungal lactamase (renamed prokaryotic 5-oxoprolinase A, pxpA) and homologs of allophanate hydrolase subunits (renamed pxpB and pxpC). Inactivation of Bacillus subtilis pxpA, pxpB, or pxpC genes slowed growth, caused OP accumulation in cells and medium, and prevented use of OP as a nitrogen source. Assays of cell lysates showed that ATP-dependent 5-oxoprolinase activity disappeared when pxpA, pxpB, or pxpC was inactivated. 5-Oxoprolinase activity could be reconstituted in vitro by mixing recombinant B. subtilis PxpA, PxpB, and PxpC proteins. In addition, overexpressing Escherichia coli pxpABC genes in E. coli increased 5-oxoprolinase activity in lysates ≥1700-fold. This work shows that OP is a major universal metabolite damage product and that OP disposal systems are common in all domains of life. Furthermore, it illustrates how easily metabolite damage and damage-control systems can be overlooked, even for central metabolites in model organisms.


Asunto(s)
Alofanato Hidrolasa/metabolismo , Amidohidrolasas/aislamiento & purificación , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Alofanato Hidrolasa/genética , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Genómica/métodos , Familia de Multigenes , Mutación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Proteínas Recombinantes/metabolismo
6.
Metabolomics ; 132017 01.
Artículo en Inglés | MEDLINE | ID: mdl-29732238

RESUMEN

Introduction: Statins, widely prescribed drugs for treatment of cardiovascular disease, inhibit the biosynthesis of low density lipoprotein cholesterol (LDL-C). Despite providing major benefits, sub populations of patients experience adverse effects, including muscle myopathy and development of type II diabetes mellitus (T2DM) that may result in premature discontinuation of treatment. There are no reliable biomarkers for predicting clinical side effects in vulnerable individuals. Pharmacometabolomics provides powerful tools for identifying global biochemical changes induced by statin treatment, providing insights about drug mechanism of action, development of side effects and basis of variation of response. Objective: To determine whether statin-induced changes in intermediary metabolism correlated with statin-induced hyperglycemia and insulin resistance; to identify pre-drug treatment metabolites predictive of post-drug treatment increased diabetic risk. Methods: Drug-naïve patients were treated with 40 mg/day simvastatin for 6 weeks in the Cholesterol and Pharmacogenetics (CAP) study; metabolomics by gas chromatography-time-of-flight mass-spectrometry (GC-TOF-MS) was performed on plasma pre and post treatment on 148 of the 944 participants. Results: Six weeks of simvastatin treatment resulted in 6.9% of patients developing hyperglycemia and 25% developing changes consistent with development of pre-diabetes. Altered beta cell function was observed in 53% of patients following simvastatin therapy and insulin resistance was observed in 54% of patients. We identified initial signature of simvastatin-induced insulin resistance, including ethanolamine, hydroxylamine, hydroxycarbamate and isoleucine which, upon further replication and expansion, could be predictive biomarkers of individual susceptibility to simvastatin-induced new onset pre-type II diabetes mellitus. No patients were clinically diagnosed with T2DM. Conclusion: Within this short 6 weeks study, some patients became hyperglycemic and/or insulin resistant. Diabetic markers were associated with decarboxylated small aminated metabolites as well as a branched chain amino acid directly linked to glucose metabolism and fatty acid biosynthesis. Pharmacometabolomics provides powerful tools for precision medicine by predicting development of drug adverse effects in sub populations of patients. Metabolic profiling prior to start of drug therapy may empower physicians with critical information when prescribing medication and determining prognosis.

7.
ACS Chem Biol ; 11(8): 2304-11, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27294475

RESUMEN

DUF1537 is a novel family of kinases identified by comparative genomic approaches. The family is widespread and found in all sequenced plant genomes and 16% of sequenced bacterial genomes. DUF1537 is not a monofunctional family and contains subgroups that can be separated by phylogenetic and genome neighborhood context analyses. A subset of the DUF1537 proteins is strongly associated by physical clustering and gene fusion with the PdxA2 family, demonstrated here to be a functional paralog of the 4-phosphohydroxy-l-threonine dehydrogenase enzyme (PdxA), a central enzyme in the synthesis of pyridoxal-5'-phosphate (PLP) in proteobacteria. Some members of this DUF1537 subgroup phosphorylate l-4-hydroxythreonine (4HT) into 4-phosphohydroxy-l-threonine (4PHT), the substrate of PdxA, in vitro and in vivo. This provides an alternative route to PLP from the toxic antimetabolite 4HT that can be directly generated from the toxic intermediate glycolaldehyde. Although the kinetic and physical clustering data indicate that these functions in PLP synthesis are not the main roles of the DUF1537-PdxA2 enzymes, genetic and physiological data suggest these side activities function has been maintained in diverse sets of organisms.


Asunto(s)
Fosfotransferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Fosfotransferasas/genética
8.
J Cheminform ; 7: 44, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26322134

RESUMEN

BACKGROUND: In spite of its great promise, metabolomics has proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography-mass spectrometry (LC-MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. DESCRIPTION: Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likely to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC-MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. CONCLUSIONS: MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. Furthermore, MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures. Graphical abstractMINE database construction and access methods. The process of constructing a MINE database from the curated source databases is depicted on the left. The methods for accessing the database are shown on the right.

9.
BMC Genomics ; 16: 382, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25975565

RESUMEN

BACKGROUND: It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions. RESULTS: Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate. CONCLUSIONS: Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.


Asunto(s)
Proteínas Bacterianas/metabolismo , Genómica , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Carbamoil Fosfato/metabolismo , Hidrólisis , Iminas/metabolismo , Metabolómica , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas/metabolismo , Filogenia , Conformación Proteica , Salmonella enterica/clasificación , Salmonella enterica/genética , Salmonella enterica/metabolismo , Terminología como Asunto
10.
Plant Cell ; 26(7): 3010-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25070638

RESUMEN

RidA (for Reactive Intermediate Deaminase A) proteins are ubiquitous, yet their function in eukaryotes is unclear. It is known that deleting Salmonella enterica ridA causes Ser sensitivity and that S. enterica RidA and its homologs from other organisms hydrolyze the enamine/imine intermediates that Thr dehydratase forms from Ser or Thr. In S. enterica, the Ser-derived enamine/imine inactivates a branched-chain aminotransferase; RidA prevents this damage. Arabidopsis thaliana and maize (Zea mays) have a RidA homolog that is predicted to be plastidial. Expression of either homolog complemented the Ser sensitivity of the S. enterica ridA mutant. The purified proteins hydrolyzed the enamines/imines formed by Thr dehydratase from Ser or Thr and protected the Arabidopsis plastidial branched-chain aminotransferase BCAT3 from inactivation by the Ser-derived enamine/imine. In vitro chloroplast import assays and in vivo localization of green fluorescent protein fusions showed that Arabidopsis RidA and Thr dehydratase are chloroplast targeted. Disrupting Arabidopsis RidA reduced root growth and raised the root and shoot levels of the branched-chain amino acid biosynthesis intermediate 2-oxobutanoate; Ser treatment exacerbated these effects in roots. Supplying Ile reversed the root growth defect. These results indicate that plastidial RidA proteins can preempt damage to BCAT3 and Ile biosynthesis by hydrolyzing the Ser-derived enamine/imine product of Thr dehydratase.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Aminohidrolasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , L-Serina Deshidratasa/metabolismo , Treonina Deshidratasa/metabolismo , Transaminasas/metabolismo , Zea mays/metabolismo , Secuencia de Aminoácidos , Aminohidrolasas/genética , Animales , Arabidopsis/química , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Butiratos/metabolismo , Hidrólisis , Iminas/metabolismo , L-Serina Deshidratasa/genética , Metabolómica , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plastidios/enzimología , Alineación de Secuencia , Treonina Deshidratasa/genética , Transaminasas/genética , Zea mays/química , Zea mays/genética
11.
Plant Physiol ; 165(1): 52-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24599492

RESUMEN

NADH and NADPH undergo spontaneous and enzymatic reactions that produce R and S forms of NAD(P)H hydrates [NAD(P)HX], which are not electron donors and inhibit various dehydrogenases. In bacteria, yeast (Saccharomyces cerevisiae), and mammals, these hydrates are repaired by the tandem action of an ADP- or ATP-dependent dehydratase that converts (S)-NAD(P)HX to NAD(P)H and an epimerase that facilitates interconversion of the R and S forms. Plants have homologs of both enzymes, the epimerase homolog being fused to the vitamin B6 salvage enzyme pyridoxine 5'-phosphate oxidase. Recombinant maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) NAD(P)HX dehydratases (GRMZM5G840928, At5g19150) were able to reconvert (S)-NAD(P)HX to NAD(P)H in an ATP-dependent manner. Recombinant maize and Arabidopsis epimerases (GRMZM2G061988, At5g49970) rapidly interconverted (R)- and (S)-NAD(P)HX, as did a truncated form of the Arabidopsis epimerase lacking the pyridoxine 5'-phosphate oxidase domain. All plant NAD(P)HX dehydratase and epimerase sequences examined had predicted organellar targeting peptides with a potential second start codon whose use would eliminate the targeting peptide. In vitro transcription/translation assays confirmed that both start sites were used. Dual import assays with purified pea (Pisum sativum) chloroplasts and mitochondria, and subcellular localization of GFP fusion constructs in tobacco (Nicotiana tabacum) suspension cells, indicated mitochondrial, plastidial, and cytosolic localization of the Arabidopsis epimerase and dehydratase. Ablation of the Arabidopsis dehydratase gene raised seedling levels of all NADHX forms by 20- to 40-fold, and levels of one NADPHX form by 10- to 30-fold. We conclude that plants have a canonical two-enzyme NAD(P)HX repair system that is directed to three subcellular compartments via the use of alternative translation start sites.


Asunto(s)
Arabidopsis/metabolismo , NADP/metabolismo , Agua/metabolismo , Zea mays/metabolismo , Arabidopsis/enzimología , Técnicas de Inactivación de Genes , Hidroliasas/metabolismo , Cinética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Piridoxaminafosfato Oxidasa/química , Racemasas y Epimerasas/química , Racemasas y Epimerasas/metabolismo , Homología de Secuencia de Ácido Nucleico , Fracciones Subcelulares/enzimología , Zea mays/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...