Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 13(1): 350, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883190

RESUMEN

BACKGROUND: The purpose of this study was to investigate allogenic immune responses following the transplantation of insulin-producing cells (IPCs) differentiated from human adipose tissue-derived stem cells (hAT-MSCs) into humanized mice. METHODS: hAT-MSCs were isolated from liposuction aspirates obtained from HLA-A2-negative healthy donors. These cells were expanded and differentiated into IPCs. HLA-A2-positive humanized mice (NOG-EXL) were divided into 4 groups: diabetic mice transplanted with IPCs, diabetic but nontransplanted mice, nondiabetic mice transplanted with IPCs and normal untreated mice. Three million differentiated cells were transplanted under the renal capsule. Animals were followed-up to determine their weight, glucose levels (2-h postprandial), and human and mouse insulin levels. The mice were euthanized 6-8 weeks posttransplant. The kidneys were explanted for immunohistochemical studies. Blood, spleen and bone marrow samples were obtained to determine the proportion of immune cell subsets (CD4+, CD8+, CD16+, CD19+ and CD69+), and the expression levels of HLA-ABC and HLA-DR. RESULTS: Following STZ induction, blood glucose levels increased sharply and were then normalized within 2 weeks after cell transplantation. In these animals, human insulin levels were measurable while mouse insulin levels were negligible throughout the observation period. Immunostaining of cell-bearing kidneys revealed sparse CD45+ cells. Immunolabeling and flow cytometry of blood, bone marrow and splenic samples obtained from the 3 groups of animals did not reveal a significant difference in the proportions of immune cell subsets or in the expression levels of HLA-ABC and HLA-DR. CONCLUSION: Transplantation of IPCs derived from allogenic hAT-MSCs into humanized mice was followed by a muted allogenic immune response that did not interfere with the functionality of the engrafted cells. Our findings suggest that such allogenic cells could offer an opportunity for cell therapy for insulin-dependent diabetes without immunosuppression, encapsulation or gene manipulations.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Células Madre Mesenquimatosas , Animales , Diferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Antígeno HLA-A2/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre/metabolismo
2.
Front Immunol ; 12: 690623, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248981

RESUMEN

Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.


Asunto(s)
Glucemia/metabolismo , Diferenciación Celular , Diabetes Mellitus Tipo 1/cirugía , Células Secretoras de Insulina/trasplante , Insulina/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Animales , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inmunología , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Células Madre Mesenquimatosas/inmunología , Fenotipo
3.
Stem Cell Rev Rep ; 16(6): 1156-1172, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32880857

RESUMEN

Mesenchymal stromal cells (MSCs) are an attractive option for cell therapy for type 1 diabetes mellitus (DM). These cells can be obtained from many sources, but bone marrow and adipose tissue are the most studied. MSCs have distinct advantages since they are nonteratogenic, nonimmunogenic and have immunomodulatory functions. Insulin-producing cells (IPCs) can be generated from MSCs by gene transfection, gene editing or directed differentiation. For directed differentiation, MSCs are usually cultured in a glucose-rich medium with various growth and activation factors. The resulting IPCs can control chemically-induced diabetes in immune-deficient mice. These findings are comparable to those obtained from pluripotent cells. PD-L1 and PD-L2 expression by MSCs is upregulated under inflammatory conditions. Immunomodulation occurs due to the interaction between these ligands and PD-1 receptors on T lymphocytes. If this function is maintained after differentiation, life-long immunosuppression or encapsulation could be avoided. In the clinical setting, two sites can be used for transplantation of IPCs: the subcutaneous tissue and the omentum. A 2-stage procedure is required for the former and a laparoscopic procedure for the latter. For either site, cells should be transplanted within a scaffold, preferably one from fibrin. Several questions remain unanswered. Will the transplanted cells be affected by the antibodies involved in the pathogenesis of type 1 DM? What is the functional longevity of these cells following their transplantation? These issues have to be addressed before clinical translation is attempted. Graphical Abstract Bone marrow MSCs are isolated from the long bone of SD rats. Then they are expanded and through directed differentiation insulin-producing cells are formed. The differentiated cells are loaded onto a collagen scaffold. If one-stage transplantation is planned, a drug delivery system must be incorporated to ensure immediate oxygenation, promote vascularization and provide some growth factors. Some mechanisms involved in the immunomodulatory function of MSCs. These are implemented either by cell to cell contact or by the release of soluble factors. Collectively, these pathways results in an increase in T-regulatory cells.


Asunto(s)
Células Secretoras de Insulina/citología , Células Madre Mesenquimatosas/citología , Animales , Células Inmovilizadas/citología , Edición Génica , Humanos , Inmunidad , Trasplante de Células Madre Mesenquimatosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA