Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Futur J Pharm Sci ; 8(1): 12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35071609

RESUMEN

BACKGROUND: Nanotechnology is considered a new and rapidly emerging area in the pharmaceutical and medicinal field. Nanoparticles, as drug delivery systems, impart several advantages concerning improved efficacy as well as reduced adverse drug reactions. MAIN BODY: Different types of nanosystems have been fabricated including carbon nanotubes, paramagnetic nanoparticles, dendrimers, nanoemulsions, etc. Physicochemical properties of the starting materials and the selected method of preparation play a significant aspect in determining the shape and characteristics of the developed nanoparticles. Dispersion of preformed polymers, coacervation, polymerization, nano-spray drying and supercritical fluid technology are among the most extensively used techniques for the preparation of nanocarriers. Particle size, surface charge, surface hydrophobicity and drug release are the main factors affecting nanoparticles physical stability and biological performance of the incorporated drug. In clinical practice, many nanodrugs have been used for both diagnostic and therapeutic applications and are being investigated for various indications in clinical trials. Nanoparticles are used for the cure of kidney diseases, tuberculosis, skin conditions, Alzheimer's disease, different types of cancer as well as preparation of COVID-19 vaccines. CONCLUSION: In this review, we will confer the advantages, types, methods of preparation, characterization methods and some of the applications of nano-systems.

2.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946414

RESUMEN

There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of ß-cyclodextrin (SBE-ß-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-ß-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-ß-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Diarilquinolinas/administración & dosificación , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamiento farmacológico , beta-Ciclodextrinas/química , Células A549 , Administración por Inhalación , Antibióticos Antineoplásicos/farmacología , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Línea Celular Tumoral , Diarilquinolinas/farmacología , Reposicionamiento de Medicamentos , Humanos , Modelos Moleculares
3.
Drug Deliv Transl Res ; 11(3): 927-943, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32557351

RESUMEN

Afatinib (AFA) is a potent aniline-quinazoline derivative, approved by the Food and Drug Administration (FDA) in 2013, as a first-line treatment for metastatic non-small cell lung cancer (NSCLC). However, its clinical application is highly limited by its poor solubility, and consequently low bioavailability. We hypothesize that loading of AFA into biodegradable PLGA nanoparticles for localized inhalational drug delivery will be instrumental in improving therapeutic outcomes in NSCLC patients. Formulated AFA nanoparticles (AFA-NP) were evaluated for physicochemical properties (particle size: 180.2 ± 15.6 nm, zeta potential: - 23.1 ± 0.2 mV, % entrapment efficiency: 34.4 ± 2.3%), formulation stability, in-vitro aerosol deposition behavior, and anticancer efficacy. Stability studies revealed the physicochemical stability of AFA-NP. Moreover, AFA-NP exhibited excellent inhalable properties (mass median aerodynamic diameter (MMAD): 4.7 ± 0.1 µm; fine particle fraction (FPF): 77.8 ± 4.3%), indicating efficient particle deposition in deep lung regions. With respect to in-vitro drug release, AFA-NP showed sustained drug release with cumulative release of 56.8 ± 6.4% after 48 h. Cytotoxic studies revealed that encapsulation of AFA into PLGA nanoparticles significantly enhanced its cytotoxic potential in KRAS-mutated NSCLC cell lines (A549, H460). Cellular uptake studies revealed enhanced internalization of coumarin-loaded nanoparticles compared to plain coumarin in A549. In addition, 3D tumor spheroid studies demonstrated superior efficacy of AFA-NP in tumor penetration and growth inhibition. To conclude, we have established in-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy, which will be of great significance when designing preclinical and clinical studies. Graphical abstract.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Afatinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Nanopartículas/química , Tamaño de la Partícula
4.
Mater Sci Eng C Mater Biol Appl ; 115: 111139, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32600728

RESUMEN

New drug and dosage form development faces significant challenges, especially in oncology, due to longer development cycle and associated scale-up complexities. Repurposing of existing drugs with potential anti-cancer activity into new therapeutic regimens provides a feasible alternative. In this project, amodiaquine (AQ), an anti-malarial drug, has been explored for its anti-cancer efficacy through formulating inhalable nanoparticulate systems using high-pressure homogenization (HPH) with scale-up feasibility and high reproducibility. A 32 multifactorial design was employed to better understand critical processes (probe homogenization speed while formulating coarse emulsion) and formulation parameters (concentration of cationic polymer in external aqueous phase) so as to ensure product quality with improved anticancer efficacy in non-small cell lung cancer (NSCLC). Optimized AQ loaded nanoparticles (AQ NP) were evaluated for physicochemical properties, stability profile, in-vitro aerosol deposition behavior, cytotoxic potential against NSCLC cells in-vitro and in 3D simulated tumor spheroid model. The highest probe homogenization speed (25,000 rpm) resulted in lower particle size. Incorporation of cationic polymer, polyethylenimine (0.5% w/v) resulted in high drug loading efficiencies at optimal drug quantity of 5 mg. Formulated nanoparticles (liquid state) exhibited an aerodynamic diameter of 4.7 ± 0.1 µm and fine particle fraction of 81.0 ± 9.1%, indicating drug deposition in the respirable airways. Cytotoxicity studies in different NSCLC cell lines revealed significant reduction in IC50 values with AQ-loaded nanoparticles compared to plain drug, along with significant cell migration inhibition (scratch assay) and reduced % colony growth (clonogenic assay) in A549 cells with AQ NP. Moreover, 3D simulated spheroid studies revealed efficacy of nanoparticles in penetration to tumor core, and growth inhibition. AQ's autophagy inhibition ability significantly increased (increased LC3B-II levels) with nanoparticle encapsulation, along with moderate improvement in apoptosis induction (Caspase-3 levels). No impact was observed on HUVEC angiogenesis suggesting alternative anticancer mechanisms. To conclude, amodiaquine can be a promising candidate for repurposing to treat NSCLC while delivering inhalable nanoparticles developed using a scalable HPH process. Despite the involvement of complex parameters, application of DoE has simplified the process of product and process optimization.


Asunto(s)
Amodiaquina/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Esferoides Celulares/citología , Células A549 , Administración por Inhalación , Amodiaquina/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Reposicionamiento de Medicamentos , Estabilidad de Medicamentos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Nanopartículas , Tamaño de la Partícula , Esferoides Celulares/efectos de los fármacos
5.
Bioanalysis ; 12(3): 159-174, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32052636

RESUMEN

Aim: A high throughput ultra-performance liquid chromatography (UPLC)-ultraviolet method for quantification of nintedanib in rat and human plasma was developed and optimized using chemometrical approach. Method: Design of experiment and multivariate statistical approach was used for definition of optimized method. Final separation was performed using protein precipitation method on ACQUITY HSS T3 C18 column in isocratic mode using potassium phosphate buffer (pH 7.5): acetonitrile. Results: Method was validated as per US-FDA guidelines linearly from 15-750 ng/ml. All quality control samples showed <15% relative standard deviation for precision and 85-115% accuracy along with >98% extraction recovery. Conclusion: The developed method is easily applicable in determining pharmacokinetic parameters in preclinical subjects along with successful implementation for quantification in human plasma samples.


Asunto(s)
Antineoplásicos/sangre , Cromatografía Liquida/métodos , Indoles/sangre , Animales , Antineoplásicos/farmacología , Humanos , Indoles/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...