Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 40(1): 119, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794967

RESUMEN

The circadian system temporally regulates physiology to maintain homeostasis. Co-opting and disrupting circadian signals appear to be distinct attributes that are functionally important for the development of a tumor and can enable or give rise to the hallmarks that tumors use to facilitate their initiation, growth and progression. Because circadian signals are also strong regulators of immune cell proliferation, trafficking and exhaustion states, they play a role in how tumors respond to immune-based cancer therapeutics. While immuno-oncology has heralded a paradigm shift in cancer therapeutics, greater accuracy is needed to increase our capability of predicting who will respond favorably to, or who is likely to experience the troubling adverse effects of, immunotherapy. Insights into circadian signals may further refine our understanding of biological determinants of response and help answer the fundamental question of whether certain perturbations in circadian signals interfere with the activity of immune checkpoint inhibitors. Here we review the body of literature highlighting circadian disruption as a cancer promoter and synthesize the burgeoning evidence suggesting circadian signals play a role in how tumors respond to immune-based anti-cancer therapeutics. The goal is to develop a framework to advance our understanding of the relationships between circadian markers, cancer biology, and immunotherapeutics. Bolstered by this new understanding, these relationships may then be pursued in future clinical studies to improve our ability to predict which patients will respond favorably to, and avoid the adverse effects of, traditional and immune-based cancer therapeutics.


Asunto(s)
Relojes Circadianos/inmunología , Inmunoterapia/métodos , Neoplasias/terapia , Humanos , Neoplasias/inmunología
2.
Front Oncol ; 10: 583372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381452

RESUMEN

Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.

3.
Oral Oncol ; 109: 104977, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32853912

RESUMEN

Head and neck cancers are a group of diverse and heterogeneous tumors, among which squamous cell carcinoma of the head and neck (SCCHN) is the most prevalent. Current treatment modalities have limited efficacy; therefore, new therapies are being actively developed and evaluated. The introduction of immune checkpoint inhibitors (ICIs) has led to a paradigm shift in the management of difficult-to-treat malignancies. In this review, we summarize recent advances in the development of immunotherapies, which are aimed at the functional restoration of the immune system to counteract immune-evasion strategies of cancer cells, and related biomarkers. Monotherapies with ICIs, which primarily target the programmed cell death-1 (PD-1) pathway, have shown promising results in clinical trials of patients with recurrent and metastatic SCCHN. Combinations of ICIs with conventional or virus therapies often have synergistic therapeutic effects, without increased toxicity. As only a small subset of patients respond to immunotherapy, biomarkers are essential for the prediction of treatment response and better selection of patients for ICIs. PD-1 ligand (PD-L1) expression is correlated with response but has several limitations as a predictive marker, as its expression is dynamic and heterogeneous, and the cut-off needs further confirmation. Therefore, tumor mutation burden, gene expression signatures, microsatellite instability, tumor-infiltrating lymphocytes, viral antigens, and the oral microbiota are being investigated as predictive biomarkers. Finally, we delineate other challenges and future prospects for improving patient outcomes, including the major challenge of identifying and validating predictive biomarkers that need to be addressed in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...