Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 817: 146168, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-34995731

RESUMEN

Many studies in the model species Arabidopsis thaliana characterized genes involved in embryo formation. However, much remains to be learned about the portfolio of genes that are involved in signal transduction and transcriptional regulation during plant embryo development in other species, particularly in an evolutionary context, especially considering that some genes involved in embryo patterning are not exclusive of land plants. This study, used a combination of domain architecture phylostratigraphy and phylogenetic reconstruction to investigate the evolutionary history of embryo patterning and auxin metabolism (EPAM) genes in Viridiplantae. This approach shed light on the co-optation of auxin metabolism and other molecular mechanisms that contributed to the radiation of land plants, and specifically to embryo formation. These results have potential to assist conservation programs, by directing the development of tools for obtaining somatic embryos. In this context, we employed this methodology with critically endangered and non-model species Araucaria angustifolia, the Brazilian pine, which is current focus of conservation efforts using somatic embryogenesis. So far, this approach had little success since somatic embryos fail to completely develop. By profiling the expression of genes that we identified as necessary for the emergence of land-plant embryos, we found striking differences between zygotic and somatic embryos that might explain the developmental arrest and be used to improve A. angustifolia somatic culture.


Asunto(s)
Araucaria/embriología , Araucaria/genética , Ácidos Indolacéticos/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Tipificación del Cuerpo , Evolución Molecular , Filogenia , Desarrollo de la Planta/genética
2.
PLoS One ; 11(4): e0153528, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064899

RESUMEN

Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 µM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants.


Asunto(s)
Proliferación Celular , Proteínas de Plantas/antagonistas & inhibidores , Técnicas de Embriogénesis Somática de Plantas , Tracheophyta/embriología , Tracheophyta/metabolismo , Técnicas de Cultivo de Célula , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tracheophyta/química , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA