Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; : 1-3, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38597070

RESUMEN

Mutations in the PINK1 kinase cause Parkinson disease (PD) through physiological processes that are not yet fully elucidated. PINK1 kinase accumulates selectively on damaged mitochondria, where it recruits the E3 ubiquitin ligase PRKN/Parkin to mediate mitophagy. Upon mitochondrial import failure, PINK1 accumulates in association with the translocase of outer mitochondrial membrane (TOMM). However, the molecular basis of this PINK1 accumulation on the TOMM complex remain elusive. We recently demonstrated that TIMM23 (translocase of the inner mitochondrial membrane 23) is a component of the PINK1-supercomplex formed in response to mitochondrial stress. We also uncovered that PINK1 is required for the formation of this supercomplex and highlighted the biochemical regulation and significance of this supercomplex; expanding our understanding of mitochondrial quality control and PD pathogenesis.

2.
Proc Natl Acad Sci U S A ; 121(10): e2313540121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38416681

RESUMEN

Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive early-onset Parkinson's disease (PD). PINK1 is a Ser/Thr kinase that regulates mitochondrial quality control by triggering mitophagy mediated by the ubiquitin (Ub) ligase Parkin. Upon mitochondrial damage, PINK1 accumulates on the outer mitochondrial membrane forming a high-molecular-weight complex with the translocase of the outer membrane (TOM). PINK1 then phosphorylates Ub, which enables recruitment and activation of Parkin followed by autophagic clearance of the damaged mitochondrion. Thus, Parkin-dependent mitophagy hinges on the stable accumulation of PINK1 on the TOM complex. Yet, the mechanism linking mitochondrial stressors to PINK1 accumulation and whether the translocases of the inner membrane (TIMs) are also involved remain unclear. Herein, we demonstrate that mitochondrial stress induces the formation of a PINK1-TOM-TIM23 supercomplex in human cultured cell lines, dopamine neurons, and midbrain organoids. Moreover, we show that PINK1 is required to stably tether the TOM to TIM23 complexes in response to stress such that the supercomplex fails to accumulate in cells lacking PINK1. This tethering is dependent on an interaction between the PINK1 N-terminal-C-terminal extension module and the cytosolic domain of the Tom20 subunit of the TOM complex, the disruption of which, by either designer or PD-associated PINK1 mutations, inhibits downstream mitophagy. Together, the findings provide key insight into how PINK1 interfaces with the mitochondrial import machinery, with important implications for the mechanisms of mitochondrial quality control and PD pathogenesis.


Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Quinasas , Humanos , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cell Signal ; 110: 110830, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516395

RESUMEN

Cellular signalling cues lead to the initiation of apoptotic pathways and often result in the activation of caspases which in turn cause the generation of proteolytically generated protein fragments with new or altered functions. Mounting number of studies reveal that the activity of these proteolytically activated protein fragments can be counteracted via their selective degradation by the N-degron degradation pathways. Here, we investigate the proteolytically generated fragment of the PKC theta kinase, where we demonstrate the first report on the stability of this pro-apoptotic protein fragment. We have determined that the pro-apoptotic cleaved fragment of PKC-theta is unstable in cells because its N-terminal lysine targets it for proteasomal degradation via the N-degron degradation pathway and this degradation is inhibited by mutating the destabilizing N-termini, knockdown of the UBR1 and UBR2 E3 ligases. Tellingly, we demonstrate that the metabolic stabilization of the cleaved fragment of PKC-theta or inhibition of the N-degron degradation augments the apoptosis-inducing effect of staurosporine in Jurkat cells. Notably, we have unveiled that the cleaved fragment of PKC theta, per se, can induce apoptotic cell death in Jurkat T-cell leukemia. Our results expand the functional scope of mammalian N-degron degradation pathways, and support the notion that targeting N-degron degradation machinery may have promising therapeutic implications in cancer cells.


Asunto(s)
Caspasas , Ubiquitina-Proteína Ligasas , Animales , Humanos , Proteína Quinasa C-theta/metabolismo , Caspasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis , Células Jurkat , Proteolisis , Mamíferos/metabolismo
4.
Trends Endocrinol Metab ; 34(8): 427-429, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321958

RESUMEN

Given their polyvalent roles, an intrinsic challenge that mitochondria face is the continuous exposure to various stressors including mitochondrial import defects, which leads to their dysfunction. Recent work has unveiled a presequence translocase-associated import motor (PAM) complex-dependent quality control pathway whereby misfolded proteins mitigate mitochondrial protein import and subsequently elicit mitophagy without the loss of mitochondrial membrane potential.


Asunto(s)
Mitocondrias , Mitofagia , Humanos , Mitocondrias/metabolismo , Transporte de Proteínas , Proteínas Mitocondriales/metabolismo
5.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36941054

RESUMEN

Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.


Asunto(s)
Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratas , Mutación con Ganancia de Función , Mutación/genética , Enfermedad de Parkinson/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Cells ; 11(13)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35805181

RESUMEN

The best-known hallmarks of Parkinson's disease (PD) are the motor deficits that result from the degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic neurons are thought to be particularly susceptible to mitochondrial dysfunction. As such, for their survival, they rely on the elaborate quality control mechanisms that have evolved in mammalian cells to monitor mitochondrial function and eliminate dysfunctional mitochondria. Mitophagy is a specialized type of autophagy that mediates the selective removal of damaged mitochondria from cells, with the net effect of dampening the toxicity arising from these dysfunctional organelles. Despite an increasing understanding of the molecular mechanisms that regulate the removal of damaged mitochondria, the detailed molecular link to PD pathophysiology is still not entirely clear. Herein, we review the fundamental molecular pathways involved in PINK1/Parkin-mediated and receptor-mediated mitophagy, the evidence for the dysfunction of these pathways in PD, and recently-developed state-of-the art assays for measuring mitophagy in vitro and in vivo.


Asunto(s)
Mitofagia , Enfermedad de Parkinson , Animales , Autofagia/fisiología , Mamíferos/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo
7.
Mol Biol Rep ; 49(9): 9013-9016, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35902447

RESUMEN

Mitochondrial quality control is a key element of neuronal health and viability. When left untouched, defective mitochondria can initiate neuronal degeneration. Cytosolic proteins PINK1 and Parkin comprise one key pathway responsible for clearing damaged mitochondria. Neurons, however, pose a unique challenge to this process because proteins need to be abundantly available at locations distant from the cell body. Recent study has confirmed that local translation of PINK1 in axons and dendrites is the solution. Pink1 transcripts are tethered to mitochondria via SYNJ2a and active translation, then subsequently co-transported to distal locations. Once arriving in the neuron's periphery, local translation of PINK1 can facilitate mitophagy and ultimately sustain mitochondrial health.


Asunto(s)
Mitofagia , Proteínas Quinasas , Axones/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia/genética , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Neurotox Res ; 40(4): 1103-1114, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35699891

RESUMEN

An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, human cells have evolved sophisticated quality control mechanisms to identify and eliminate abnormal dysfunctional mitochondria. One pivotal mitochondrial quality control pathway is PINK1/Parkin-dependent mitophagy which mediates the selective removal of the dysfunctional mitochondria from the cell by autophagy. PTEN-induced putative kinase 1 (PINK1) is a mitochondrial Ser/Thr kinase that was originally identified as a gene responsible for autosomal recessive early-onset Parkinson's disease (PD). Notably, upon failure of mitochondrial import, Parkin, another autosomal-recessive PD gene, is recruited to mitochondria and mediates the autophagic clearance of deregulated mitochondria. Importantly, recruitment of Parkin to damaged mitochondria hinges on the accumulation of PINK1 on the outer mitochondrial membrane (OMM). Normally, PINK1 is imported from the cytosol through the translocase of the outer membrane (TOM) complex, a large multimeric channel responsible for the import of most mitochondrial proteins. After import, PINK1 is rapidly degraded. Thus, at steady-state, PINK1 levels are kept low. However, upon mitochondrial import failure, PINK1 accumulates and forms a high-molecular weight > 700 kDa complex with TOM on the OMM. Thus, PINK1 functions as sensor, tagging dysfunctional mitochondria for Parkin-mediated mitophagy. Although much has been learned about the function of PINK1 in mitophagy, the biochemical and structural basis of negative regulation of PINK1 operation and functions is far from clear. Recent work unveiled new players as PTEN-l as negative regulator of PINK1 function. Herein, we review key aspects of mitophagy and PINK1/Parkin-mediated mitophagy with highlighting the role of negative regulation of PINK1 function and presenting some of the key future directions in PD cell biology.


Asunto(s)
Mitofagia , Enfermedad de Parkinson , Humanos , Mitocondrias/metabolismo , Fosfohidrolasa PTEN/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Curr Protein Pept Sci ; 23(3): 129-132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35598241

RESUMEN

One salient hallmark of neurodegeneration is the accumulation of toxic protein aggregates in neuronal cells. This proteotoxicity culminates in the deterioration of neuronal function. In AD and related tauopathies, the microtubule-associated protein tau becomes hyperphosphorylated. Hyperphosphorylated tau forms neurofibrillary tangles (NFTs) within neurons, which constitute a unique feature of tauopathies, including AD. A recent study has exploited a novel molecular strategy to counteract hyperphosphorylated tau and enhance its degradation. Analogous to the PROTAC methodology, a novel dephosphorylation targeting chimera (DEPTAC) was designed to promote the molecular interaction between tau and phosphatase, which, in turn, augments its degradation. Herein, we briefly discuss this novel finding and its potential therapeutic implications.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/metabolismo , Humanos , Ovillos Neurofibrilares/metabolismo , Neuronas/metabolismo , Fosforilación , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Physiol Rev ; 102(4): 1721-1755, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35466694

RESUMEN

As a central hub for cellular metabolism and intracellular signaling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses that increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair, and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, to prevent the deleterious effects of the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Here, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy, with an emphasis on the regulation of PINK1/Parkin-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.


Asunto(s)
Enfermedad de Parkinson , Autofagia , Humanos , Mitocondrias/metabolismo , Mitofagia/fisiología , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología
11.
Bioessays ; 44(6): e2200008, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35417040

RESUMEN

Selective protein degradation maintains cellular homeostasis, but this process is disrupted in many diseases. Targeted protein degradation (TPD) approaches, built upon existing cellular mechanisms, are promising methods for therapeutically regulating protein levels. Here, we review the diverse palette of tools that are now available for doing so throughout the gene expression pathway and in specific cellular compartments. These include methods for directly removing targeted proteins via the ubiquitin proteasome system with proteolysis targeting chimeras (PROTACs) or dephosphorylation targeting chimeras (DEPTACs). Similar effects can also be achieved through the lysosomal system with autophagy-targeting chimeras (AUTACs), autophagosome tethering compounds (ATTECs), and lysosome targeting chimeras (LYTACs). Other methods act upstream to degrade RNAs (ribonuclease targeting chimeras; RIBOTACs) or transcription factors (transcription factor targeting chimeras; TRAFTACs), offering control throughout the gene expression process. We highlight the evolution and function of these methods and discuss their clinical implications in diverse disease contexts.


Asunto(s)
Lisosomas , Complejo de la Endopetidasa Proteasomal , Autofagia , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Transcripción/metabolismo
12.
Neurotox Res ; 40(1): 298-318, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35043375

RESUMEN

Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.


Asunto(s)
Enfermedades Neurodegenerativas , Ubiquitina , Animales , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
13.
Mol Cell ; 82(1): 44-59.e6, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34875213

RESUMEN

Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.


Asunto(s)
Proteínas de Insectos/metabolismo , Mitocondrias/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo , Tribolium/enzimología , Animales , Línea Celular Tumoral , Activación Enzimática , Estabilidad de Enzimas , Humanos , Proteínas de Insectos/genética , Cinética , Mitocondrias/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Simulación del Acoplamiento Molecular , Mutación , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Relación Estructura-Actividad , Tribolium/genética
14.
Nanomaterials (Basel) ; 11(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34361157

RESUMEN

Unlike cytosolic proteins, membrane proteins (MPs) are embedded within the plasma membrane and the lipid bilayer of intracellular organelles. MPs serve in various cellular processes and account for over 65% of the current drug targets. The development of membrane mimetic systems such as bicelles, short synthetic polymers or amphipols, and membrane scaffold proteins (MSP)-based nanodiscs has facilitated the accommodation of synthetic lipids to stabilize MPs, yet the preparation of these membrane mimetics remains detergent-dependent. Bio-inspired synthetic polymers present an invaluable tool for excision and liberation of superstructures of MPs and their surrounding annular lipid bilayer in the nanometric discoidal assemblies. In this article, we discuss the significance of self-assembling process in design of biomimetic systems, review development of multiple series of amphipathic polymers and the significance of these polymeric "belts" in biomedical research in particular in unraveling the structures, dynamics and functions of several high-value membrane protein targets.

15.
Bioessays ; 43(2): e2000212, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33210303

RESUMEN

Autophagy functions in both selective and non-selective ways to maintain cellular homeostasis. Endoplasmic reticulum autophagy (ER-phagy) is a subclass of autophagy responsible for the degradation of the endoplasmic reticulum through selective encapsulation into autophagosomes. ER-phagy occurs both under physiological conditions and in response to stress cues, and plays a crucial role in maintaining the homeostatic control of the organelle. Although specific receptors that target parts of the ER membrane, as well as, internal proteins for lysosomal degradation have been identified, the molecular regulation of ER-phagy has been elusive. Recent work has uncovered novel regulators of ER-phagy that involve post-translational modifications of ER-resident proteins and functional cross-talk with other cellular processes. Herein, we discuss how morphology affects the function of the peripheral ER, and how ER-phagy modulates the turnover of this organelle. We also address how ER-phagy is regulated at the molecular level, considering implications relevant to human diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Proteínas de la Membrana , Autofagia , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional
16.
Anticancer Agents Med Chem ; 21(2): 231-236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32814541

RESUMEN

Intracellular protein degradation is mediated selectively by the Ubiquitin-Proteasome System (UPS) and autophagic-lysosomal system in mammalian cells. Many cellular and physiological processes, such as cell division, cell differentiation, and cellular demise, are fine-tuned via the UPS-mediated protein degradation. Notably, impairment of UPS contributes to human disorders, including cancer and neurodegeneration. The proteasome- dependent N-degron pathways mediate the degradation of proteins through their destabilizing aminoterminal residues. Recent advances unveiled that targeting N-degron proteolytic pathways can aid in sensitizing some cancer cells to chemotherapeutic agents. Furthermore, interestingly, exploiting the N-degron feature, the simplest degradation signal in mammals, and fusing it to a ligand specific for Estrogen-Related Receptor alpha (ERRa) has demonstrated its utility in ERRa knockdown, via N-terminal dependent degradation, and also its efficiency in the inhibition of growth of breast cancer cells. These recent advances uncover the therapeutic implications of targeting and exploiting N-degron proteolytic pathways to curb growth and migration of cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteolisis/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
17.
Endocrinology ; 161(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33159513

RESUMEN

In mammals, protein degradation is mediated selectively by the ubiquitin proteasome system (UPS) and the autophagic-lysosomal system. Over the past decades, N-degron pathways have been shown to be responsible for the selective degradation of proteins that harbor destabilizing N-terminal motifs. Recent studies have employed these pathways in the development of proteolysis targeting chimeras (PROTACs) composed of a degradation module linked to a substrate recognition domain to target proteins encoded by cancer-related genes for proteasomal destruction. Herein we provide an overview of PROTACs in the context of the N-degron concept and address the application of this technique to curb the migration and invasion of cancer cells, with a focus on the far-reaching potential of exploiting N-degron pathways for therapeutic purposes.


Asunto(s)
Autofagia/fisiología , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Humanos
20.
Trends Biochem Sci ; 45(9): 723-725, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32616332

RESUMEN

The endoplasmic reticulum-associated degradation (ERAD) pathway eliminates misfolded proteins. The Hrd1 complex represents the main gate mediating retrotranslocation of ER luminal misfolded (ERAD-L) substrates to the cytosol. A recent cryo-electron microscopy (cryo-EM) study by Wu et al. unveils the structural features of active Hrd1, providing mechanistic insights into the movement of proteins directed for degradation across ER membranes.


Asunto(s)
Microscopía por Crioelectrón , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...