Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 20(10): 1372-1380, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451789

RESUMEN

In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of RUNX transcription factor paralogs with apparent functional redundancy. Here we asked what cell-type-specific biologies might be supported by the selective expression of RUNX paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional nonequivalence between RUNX paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain and evolutionary reconstruction suggested convergence of RUNT domain residues toward submaximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Sistema Inmunológico/fisiología , Células de Langerhans/fisiología , Especificidad de Órganos/genética , Linfocitos T Reguladores/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Secuencia Conservada , Evolución Molecular , Duplicación de Gen , Humanos , Mamíferos , Transducción de Señal , Transcriptoma
2.
Genome Biol ; 19(1): 126, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30180872

RESUMEN

BACKGROUND: Aging is characterized by loss of function of the adaptive immune system, but the underlying causes are poorly understood. To assess the molecular effects of aging on B cell development, we profiled gene expression and chromatin features genome-wide, including histone modifications and chromosome conformation, in bone marrow pro-B and pre-B cells from young and aged mice. RESULTS: Our analysis reveals that the expression levels of most genes are generally preserved in B cell precursors isolated from aged compared with young mice. Nonetheless, age-specific expression changes are observed at numerous genes, including microRNA encoding genes. Importantly, these changes are underpinned by multi-layered alterations in chromatin structure, including chromatin accessibility, histone modifications, long-range promoter interactions, and nuclear compartmentalization. Previous work has shown that differentiation is linked to changes in promoter-regulatory element interactions. We find that aging in B cell precursors is accompanied by rewiring of such interactions. We identify transcriptional downregulation of components of the insulin-like growth factor signaling pathway, in particular downregulation of Irs1 and upregulation of Let-7 microRNA expression, as a signature of the aged phenotype. These changes in expression are associated with specific alterations in H3K27me3 occupancy, suggesting that Polycomb-mediated repression plays a role in precursor B cell aging. CONCLUSIONS: Changes in chromatin and 3D genome organization play an important role in shaping the altered gene expression profile of aged precursor B cells. Components of the insulin-like growth factor signaling pathways are key targets of epigenetic regulation in aging in bone marrow B cell precursors.


Asunto(s)
Envejecimiento/genética , Linfocitos B/metabolismo , Cromatina/química , Epigénesis Genética , Somatomedinas/fisiología , Transcriptoma , Envejecimiento/inmunología , Animales , Linfocitos B/inmunología , Regulación hacia Abajo , Genoma , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/genética , Células Madre/inmunología , Células Madre/metabolismo
3.
Nat Commun ; 8(1): 36, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28652613

RESUMEN

Polycomb repressive complexes (PRCs) are important histone modifiers, which silence gene expression; yet, there exists a subset of PRC-bound genes actively transcribed by RNA polymerase II (RNAPII). It is likely that the role of Polycomb repressive complex is to dampen expression of these PRC-active genes. However, it is unclear how this flipping between chromatin states alters the kinetics of transcription. Here, we integrate histone modifications and RNAPII states derived from bulk ChIP-seq data with single-cell RNA-sequencing data. We find that Polycomb repressive complex-active genes have greater cell-to-cell variation in expression than active genes, and these results are validated by knockout experiments. We also show that PRC-active genes are clustered on chromosomes in both two and three dimensions, and interactions with active enhancers promote a stabilization of gene expression noise. These findings provide new insights into how chromatin regulation modulates stochastic gene expression and transcriptional bursting, with implications for regulation of pluripotency and development.Polycomb repressive complexes modify histones but it is unclear how changes in chromatin states alter kinetics of transcription. Here, the authors use single-cell RNAseq and ChIPseq to find that actively transcribed genes with Polycomb marks have greater cell-to-cell variation in expression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas del Grupo Polycomb/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Marcadores Genéticos , Ratones , Ratones Noqueados , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Genes Dev ; 30(9): 1101-15, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125671

RESUMEN

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.


Asunto(s)
Heterocromatina/genética , Heterocromatina/metabolismo , Células Madre Embrionarias de Ratones/fisiología , Proteína Homeótica Nanog/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Regulación hacia Abajo , Eliminación de Gen , Ratones , Proteína Homeótica Nanog/genética , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Genet ; 47(10): 1179-1186, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26323060

RESUMEN

The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.


Asunto(s)
Células Madre Embrionarias/metabolismo , Genoma , Proteínas del Grupo Polycomb/fisiología , Animales , Ratones , Regiones Promotoras Genéticas
6.
Genome Res ; 25(4): 582-97, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25752748

RESUMEN

The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.


Asunto(s)
Sitios de Unión/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Animales , Cromatina/genética , Células Madre Embrionarias/citología , Epigénesis Genética , Histonas/genética , Hígado/citología , Hígado/embriología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Cell Rep ; 7(5): 1456-1470, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24857660

RESUMEN

The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications.


Asunto(s)
Células Madre Embrionarias/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Islas de CpG , Metilación de ADN , Heterocromatina/genética , Histonas/química , Histonas/genética , Ratones , Datos de Secuencia Molecular , Complejo Represivo Polycomb 2/genética , Unión Proteica , Estructura Terciaria de Proteína , Ubiquitinación
8.
Cell ; 148(4): 664-78, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22325148

RESUMEN

Polycomb-repressive complex 1 (PRC1) has a central role in the regulation of heritable gene silencing during differentiation and development. PRC1 recruitment is generally attributed to interaction of the chromodomain of the core protein Polycomb with trimethyl histone H3K27 (H3K27me3), catalyzed by a second complex, PRC2. Unexpectedly we find that RING1B, the catalytic subunit of PRC1, and associated monoubiquitylation of histone H2A are targeted to closely overlapping sites in wild-type and PRC2-deficient mouse embryonic stem cells (mESCs), demonstrating an H3K27me3-independent pathway for recruitment of PRC1 activity. We show that this pathway is mediated by RYBP-PRC1, a complex comprising catalytic subunits of PRC1 and the protein RYBP. RYBP-PRC1 is recruited to target loci in mESCs and is also involved in Xist RNA-mediated silencing, the latter suggesting a wider role in Polycomb silencing. We discuss the implications of these findings for understanding recruitment and function of Polycomb repressors.


Asunto(s)
Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Fibroblastos/metabolismo , Ratones , Complejo Represivo Polycomb 1 , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
EMBO J ; 29(15): 2553-65, 2010 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-20601937

RESUMEN

An important facet of transcriptional repression by Polycomb repressive complex 1 (PRC1) is the mono-ubiquitination of histone H2A by the combined action of the Posterior sex combs (Psc) and Sex combs extra (Sce) proteins. Here, we report that two ubiquitin-specific proteases, USP7 and USP11, co-purify with human PRC1-type complexes through direct interactions with the Psc orthologues MEL18 and BMI1, and with other PRC1 components. Ablation of either USP7 or USP11 in primary human fibroblasts results in de-repression of the INK4a tumour suppressor accompanied by loss of PRC1 binding at the locus and a senescence-like proliferative arrest. Mechanistically, USP7 and USP11 regulate the ubiquitination status of the Psc and Sce proteins themselves, thereby affecting their turnover and abundance. Our results point to a novel function for USPs in the regulation and function of Polycomb complexes.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas Represoras/metabolismo , Tioléster Hidrolasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proliferación Celular , Células Cultivadas , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Unión Proteica , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Tioléster Hidrolasas/genética , Ubiquitina Tiolesterasa/genética , Peptidasa Específica de Ubiquitina 7 , Ubiquitinación
10.
Mol Cell Biol ; 30(3): 657-74, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933844

RESUMEN

Ino80 is an ATP-dependent nucleosome-remodeling enzyme involved in transcription, replication, and the DNA damage response. Here, we characterize the fission yeast Ino80 and find that it is essential for cell viability. We show that the Ino80 complex from fission yeast mediates ATP-dependent nucleosome remodeling in vitro. The purification of the Ino80-associated complex identified a highly conserved complex and the presence of a novel zinc finger protein with similarities to the mammalian transcriptional regulator Yin Yang 1 (YY1) and other members of the GLI-Krüppel family of proteins. Deletion of this Iec1 protein or the Ino80 complex subunit arp8, ies6, or ies2 causes defects in DNA damage repair, the response to replication stress, and nucleotide metabolism. We show that Iec1 is important for the correct expression of genes involved in nucleotide metabolism, including the ribonucleotide reductase subunit cdc22 and phosphate- and adenine-responsive genes. We find that Ino80 is recruited to a large number of promoter regions on phosphate starvation, including those of phosphate- and adenine-responsive genes that depend on Iec1 for correct expression. Iec1 is required for the binding of Ino80 to target genes and subsequent histone loss at the promoter and throughout the body of these genes on phosphate starvation. This suggests that the Iec1-Ino80 complex promotes transcription through nucleosome eviction.


Asunto(s)
Nucleosomas/metabolismo , Nucleótidos/metabolismo , Fosfatos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Dedos de Zinc , Adenina/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Regulación Fúngica de la Expresión Génica , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética
11.
Mol Cell ; 28(1): 107-20, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17936708

RESUMEN

Recent studies have shown that PRC1-like Polycomb repressor complexes monoubiquity-late chromatin on histone H2A at lysine residue 119. Here we have analyzed the function of the polycomb protein Mel-18. Using affinity-tagged human MEL-18, we identify a polycomb-like complex, melPRC1, containing the core PRC1 proteins, RING1/2, HPH2, and CBX8. We show that, in ES cells, melPRC1 can functionally substitute for other PRC1-like complexes in Hox gene repression. A reconstituted subcomplex containing only Ring1B and Mel-18 functions as an efficient ubiquitin E3 ligase. This complex ubiquitylates free histone substrates nonspecifically but is highly specific for histone H2A lysine 119 in the context of nucleosomes. Mutational analysis demonstrates that while Ring1B is required for E3 function, Mel-18 directs this activity to H2A lysine 119 in chromatin. Moreover, this substrate-targeting function of Mel-18 is dependent on its prior phosphorylation at multiple residues, providing a direct link between chromatin modification and cell signaling pathways.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Sustancias Macromoleculares/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cromatina/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Genes Homeobox , Histonas/genética , Humanos , Ratones , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Fosforilación , Complejo Represivo Polycomb 1 , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Dedos de Zinc
12.
J Bacteriol ; 187(9): 3238-48, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15838051

RESUMEN

The Escherichia coli phage shock protein system (pspABCDE operon and pspG gene) is induced by numerous stresses related to the membrane integrity state. Transcription of the psp genes requires the RNA polymerase containing the sigma(54) subunit and the AAA transcriptional activator PspF. PspF belongs to an atypical class of sigma(54) AAA activators in that it lacks an N-terminal regulatory domain and is instead negatively regulated by another regulatory protein, PspA. PspA therefore represses its own expression. The PspA protein is distributed between the cytoplasm and the inner membrane fraction. In addition to its transcriptional inhibitory role, PspA assists maintenance of the proton motive force and protein export. Several lines of in vitro evidence indicate that PspA-PspF interactions inhibit the ATPase activity of PspF, resulting in the inhibition of PspF-dependent gene expression. In this study, we characterize sequences within PspA and PspF crucial for the negative effect of PspA upon PspF. Using a protein fragmentation approach, we show that the integrity of the three putative N-terminal alpha-helical domains of PspA is crucial for the role of PspA as a negative regulator of PspF. A bacterial two-hybrid system allowed us to provide clear evidence for an interaction in E. coli between PspA and PspF in vivo, which strongly suggests that PspA-directed inhibition of PspF occurs via an inhibitory complex. Finally, we identify a single PspF residue that is a binding determinant for PspA.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/fisiología , Transactivadores/fisiología , Proteínas Bacterianas/genética , Sitios de Unión , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Reporteros , Proteínas de Choque Térmico/genética , Operón Lac , Modelos Moleculares , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transactivadores/genética , Técnicas del Sistema de Dos Híbridos , beta-Galactosidasa/genética
13.
Mol Cell ; 13(2): 265-77, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14759371

RESUMEN

The histone fold is a structural motif with which two related proteins interact and is found in complexes involved in wrapping DNA, the nucleosome, and transcriptional regulation, as in NC2. We reveal a novel function for histone-fold proteins: facilitation of nucleosome remodeling. ACF1-ISWI complex (ATP-dependent chromatin assembly and remodeling factor [ACF]) associates with histone-fold proteins (CHRAC-15 and CHRAC-17 in the human chromatin accessibility complex [CHRAC]) whose functional relevance has been unclear. We show that these histone-fold proteins facilitate ATP-dependent nucleosome sliding by ACF. Direct interaction of the CHRAC-15/17 complex with the ACF1 subunit is essential for this process. CHRAC-17 interacts with another histone-fold protein, p12, in DNA polymerase epsilon, but CHRAC-15 is essential for interaction with ACF and enhancement of nucleosome sliding. Surprisingly, CHRAC-15/17, p12/CHRAC-17, and NC2 complexes facilitate ACF-mediated chromatin assembly by a mechanism different from nucleosome sliding enhancement, suggesting a general activity of H2A/H2B type histone-fold complexes in chromatin assembly.


Asunto(s)
Histonas/química , Nucleosomas/química , Secuencia de Aminoácidos , Animales , Cromatina/química , ADN/química , ADN Polimerasa II/química , ADN Polimerasa III/química , Proteínas de Unión al ADN/química , Relación Dosis-Respuesta a Droga , Drosophila , Glutatión Transferasa/metabolismo , Humanos , Datos de Secuencia Molecular , Nucleoproteínas/química , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Factores de Tiempo
14.
J Biol Chem ; 279(10): 8862-6, 2004 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-14688274

RESUMEN

The 25.3 kDa "adaptor" protein, PspA (phage shock protein A), is found in the cytoplasm and in association with the inner membrane of certain bacteria. PspA plays critical roles in negatively regulating the phage shock response and maintaining membrane integrity, especially during the export of proteins such as virulence factors. Homologues of PspA function exist for thylakoid biogenesis. Here we report the first three-dimensional reconstruction of a PspA assembly from Escherichia coli, visualized by electron microscopy and single particle analysis to a resolution of 30 Angstroms. The assembly forms a 9-fold rotationally symmetric ring with an outer diameter of 200 Angstroms, an inner diameter of 95 Angstroms, and a height of approximately 85 Angstroms. The molecular mass of the complex was calculated to be 1023 kDa by size exclusion chromatography, suggesting that each of the nine domains is likely to be composed of four PspA subunits. The functional implications of this PspA structure are discussed in terms of its interaction with the protein export machinery of the bacterial cell and its AAA(+) protein partner, PspF.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Choque Térmico/química , Proteínas Bacterianas/ultraestructura , Dimerización , Escherichia coli/química , Proteínas de Choque Térmico/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica , Modelos Moleculares
15.
J Mol Biol ; 320(1): 23-37, 2002 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-12079332

RESUMEN

The PspA protein, a negative regulator of the Escherichia coli phage shock psp operon, is produced when virulence factors are exported through secretins in many Gram-negative pathogenic bacteria and its homologue in plants, VIPP1, plays a critical role in thylakoid biogenesis, essential for photosynthesis. Activation of transcription by the enhancer-dependent bacterial sigma(54) containing RNA polymerase occurs through ATP hydrolysis-driven protein conformational changes enabled by activator proteins that belong to the large AAA(+) mechanochemical protein family. We show that PspA directly and specifically acts upon and binds to the AAA(+) domain of the PspF transcription activator. Interactions involving PspF and nucleotide are changed by the action of PspA. These changes and the complexes that form between PspF and PspA can explain how PspA exerts its negative effects upon transcription activated by PspF, and are of significance when considering how activities of other AAA(+) proteins might be controlled.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Transactivadores/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa Sigma 54 , Factor sigma/metabolismo , Transactivadores/genética , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...