Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 30(19): 3880-3888.e5, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32795439

RESUMEN

Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3-5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6-8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes-such as post-translational modification of one such regulator-affects organ morphology.


Asunto(s)
Capsella/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Adaptación Fisiológica/genética , Anisotropía , Proteínas de Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Capsella/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Expresión Génica/genética , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
2.
Development ; 143(18): 3394-406, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27624834

RESUMEN

Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.


Asunto(s)
Brassicaceae/anatomía & histología , Brassicaceae/metabolismo , Frutas/anatomía & histología , Frutas/metabolismo , Anisotropía , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Capsella/anatomía & histología , Capsella/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Am J Bot ; 96(9): 1581-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21622344

RESUMEN

New data on endosperm development in the early-divergent angiosperm Trithuria (Hydatellaceae) indicate that double fertilization results in formation of cellularized micropylar and unicellular chalazal domains with contrasting ontogenetic trajectories, as in waterlilies. The micropylar domain ultimately forms the cellular endosperm in the dispersed seed. The chalazal domain forms a single-celled haustorium with a large nucleus; this haustorium ultimately degenerates to form a space in the dispersed seed, similar to the chalazal endosperm haustorium of waterlilies. The endosperm condition in Trithuria and waterlilies resembles the helobial condition that characterizes some monocots, but contrasts with Amborella and Illicium, in which most of the mature endosperm is formed from the chalazal domain. The precise location of the primary endosperm nucleus governs the relative sizes of the chalazal and micropylar domains, but not their subsequent developmental trajectories. The unusual tissue layer surrounding the bilobed cotyledonary sheath in seedlings of some species of Trithuria is a belt of persistent endosperm, comparable with that of some other early-divergent angiosperms with a well-developed perisperm, such as Saururaceae and Piperaceae. The endosperm of Trithuria is limited in size and storage capacity but relatively persistent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...