Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Angew Chem Int Ed Engl ; 61(19): e202112959, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35146855

RESUMEN

Many life-science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super-resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of 'linker' compounds, that bridge biotarget, fluorophore and a functional moiety via well-established labeling protocols. Linker molecules were synthesized via the Ugi four-component reaction (Ugi-4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation- and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon-rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol-maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self-healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self-healing linker-fluorophore conjugates and demonstrated their applications in super-resolution imaging and single-molecule spectroscopy.


Asunto(s)
Colorantes Fluorescentes , Imagen Individual de Molécula , Colorantes Fluorescentes/química , Ionóforos , Rodaminas/química
3.
Cell Rep ; 38(6): 110346, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139375

RESUMEN

Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Transporte Biológico/fisiología , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteína SecA/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Conformación Proteica , Señales de Clasificación de Proteína/fisiología , Canales de Translocación SEC/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845009

RESUMEN

Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein-like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen-Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Escherichia coli/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Espectrometría de Masas , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Proteínas/genética
5.
Structure ; 29(8): 846-858.e7, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33852897

RESUMEN

The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.


Asunto(s)
Bacillus subtilis/enzimología , Canales de Translocación SEC/metabolismo , Proteína SecA/química , Proteína SecA/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos
6.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531394

RESUMEN

Zinc is an essential element in all domains of life. Nonetheless, how prokaryotes achieve selective acquisition of zinc from the extracellular environment remains poorly understood. Here, we elucidate a novel mechanism for zinc-binding in AdcA, a solute-binding protein of Streptococcus pneumoniae Crystal structure analyses reveal the two-domain organization of the protein and show that only the N-terminal domain (AdcAN) is necessary for zinc import. Zinc binding induces only minor changes in the global protein conformation of AdcA and stabilizes a highly mobile loop within the AdcAN domain. This loop region, which is conserved in zinc-specific solute-binding proteins, facilitates closure of the AdcAN binding site and is crucial for zinc acquisition. Collectively, these findings elucidate the structural and functional basis of selective zinc uptake in prokaryotes.IMPORTANCE Zinc is an essential nutrient for the virulence of bacterial pathogens such as Streptococcus pneumoniae Many Gram-positive bacteria use a two-domain lipoprotein for zinc acquisition, but how this class of metal-recruiting proteins acquire zinc and interact with the uptake machinery has remained poorly defined. We report the first structure of a two-domain lipoprotein, AdcA from S. pneumoniae, and use computational, spectroscopic, and microbiological approaches to provide new insights into the functional basis of zinc recruitment. Our findings reveal that AdcA employs a novel mechanism for zinc binding that we have termed the "trap-door" mechanism, and we show how the static metal-binding site of the protein, which confers its selectivity for zinc ions, is combined with a dynamic surface element to facilitate zinc recruitment and import into the bacterium. Together, these findings expand our understanding of how bacteria acquire zinc from the environment and provide a foundation for inhibiting this process, through antimicrobial targeting of the dynamic structural elements to block bacterial zinc scavenging.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas Bacterianas/fisiología , Streptococcus pneumoniae/metabolismo , Zinc/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Sitios de Unión , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos
7.
Eur J Med Chem ; 174: 45-55, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31026746

RESUMEN

Human 15-lipoxygenase-1 (15-LOX-1) is a mammalian lipoxygenase which plays an important regulatory role in several CNS and inflammatory lung diseases. To further explore the role of this enzyme in drug discovery, novel potent inhibitors with favorable physicochemical properties are required. In order to identify such new inhibitors, we established a combinatorial screening method based on acylhydrazone chemistry. This represents a novel application of combinatorial chemistry focusing on the improvement of physicochemical properties, rather than on potency. This strategy allowed us to efficiently screen 44 reaction mixtures of different hydrazides and our previously reported indole aldehyde core structure, without the need for individual synthesis of all possible combinations of building blocks. Our approach afforded three new inhibitors with IC50 values in the nanomolar range and improved lipophilic ligand efficiency.


Asunto(s)
Hidrazonas/química , Indoles/química , Inhibidores de la Lipooxigenasa/química , Araquidonato 15-Lipooxigenasa/química , Técnicas Químicas Combinatorias , Descubrimiento de Drogas , Humanos , Hidrazonas/síntesis química , Indoles/síntesis química , Ligandos , Inhibidores de la Lipooxigenasa/síntesis química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
8.
Elife ; 82019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30900991

RESUMEN

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Especificidad por Sustrato
9.
Molecules ; 24(1)2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30621100

RESUMEN

Chalcones represent a class of small drug/druglike molecules with different and multitarget biological activities. Small multi-target drugs have attracted considerable interest in the last decade due their advantages in the treatment of complex and multifactorial diseases, since "one drug-one target" therapies have failed in many cases to demonstrate clinical efficacy. In this context, we designed and synthesized potential new small multi-target agents with lipoxygenase (LOX), acetyl cholinesterase (AChE) and lipid peroxidation inhibitory activities, as well as antioxidant activity based on 2-/4- hydroxy-chalcones and the bis-etherified bis-chalcone skeleton. Furthermore, the synthesized molecules were evaluated for their cytotoxicity. Simple chalcone b4 presents significant inhibitory activity against the 15-human LOX with an IC50 value 9.5 µM, interesting anti-AChE activity, and anti-lipid peroxidation behavior. Bis-etherified chalcone c12 is the most potent inhibitor of AChE within the bis-etherified bis-chalcones followed by c11. Bis-chalcones c11 and c12 were found to combine anti-LOX, anti-AchE, and anti-lipid peroxidation activities. It seems that the anti-lipid peroxidation activity supports the anti-LOX activity for the significantly active bis-chalcones. Our circular dichroism (CD) study identified two structures capable of interfering with the aggregation process of Aß. Compounds c2 and c4 display additional protective actions against Alzheimer's disease (AD) and add to the pleiotropic profile of the chalcone derivatives. Predicted results indicate that the majority of the compounds with the exception of c11 (144 Å) can cross the Blood Brain Barrier (BBB) and act in CNS. The results led us to propose new leads and to conclude that the presence of a double enone group supports better biological activities.


Asunto(s)
Antioxidantes/química , Chalconas/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Lipooxigenasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/síntesis química , Antioxidantes/uso terapéutico , Barrera Hematoencefálica/efectos de los fármacos , Chalconas/síntesis química , Chalconas/uso terapéutico , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/uso terapéutico , Dicroismo Circular , Humanos , Peroxidación de Lípido/efectos de los fármacos , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/uso terapéutico , Simulación del Acoplamiento Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Relación Estructura-Actividad
10.
Eur J Med Chem ; 161: 93-100, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343193

RESUMEN

Antimicrobial resistance resulting in ineffective treatment of infectious diseases is an increasing global problem, particularly in infections with pathogenic bacteria. In some bacteria, such as Streptococcus pyogenes, the pathogenicity is strongly linked to the attachment of virulence factors. Their attachment to the cellular membrane is a transpeptidation reaction, catalyzed by sortase enzymes. As such, sortases pose an interesting target for the development of new antivirulence strategies that could yield novel antimicrobial drugs. Using the substitution-oriented fragment screening (SOS) approach, we discovered a potent and specific inhibitor (C10) of sortase A from S. pyogenes. The inhibitor C10 showed high specificity towards S. pyogenes sortase A, with an IC50 value of 10 µM and a Kd of 60 µM. We envision that this inhibitor could be employed as a starting point for further exploration of sortase's potential as therapeutic target for antimicrobial drug development.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Streptococcus pyogenes/efectos de los fármacos , Aminoaciltransferasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Cinética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Streptococcus pyogenes/enzimología , Relación Estructura-Actividad
11.
Phys Chem Chem Phys ; 21(7): 3721-3733, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30499568

RESUMEN

While buffer cocktails remain the most commonly used method for photostabilization and photoswitching of fluorescent markers, intramolecular triplet-state quenchers emerge as an alternative strategy to impart fluorophores with 'self-healing' or even functional properties such as photoswitching. In this contribution, we evaluated combinations of both approaches and show that inter- and intramolecular triplet-state quenching processes compete with each other. We find that although the rate of triplet-state quenching is additive, the photostability is limited by the faster pathway. Often intramolecular processes dominate the photophysical situation for combinations of covalently-linked and solution-based photostabilizers and photoswitching agents. Furthermore we show that intramolecular photostabilizers can protect fluorophores from reversible off-switching events caused by solution-additives, which was previously misinterpreted as photobleaching. Our studies also provide practical guidance for usage of photostabilizer-dye conjugates for STORM-type super-resolution microscopy permitting the exploitation of their improved photophysics for increased spatio-temporal resolution. Finally, we provide evidence that the biochemical environment, e.g., proximity of aromatic amino-acids such as tryptophan, reduces the photostabilization efficiency of commonly used buffer cocktails. Not only have our results important implications for a deeper mechanistic understanding of self-healing dyes, but they will provide a general framework to select label positions for optimal and reproducible photostability or photoswitching kinetics in different biochemical environments.

12.
Bioorg Med Chem ; 26(5): 999-1005, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29428527

RESUMEN

Macrophage migration inhibitory factor (MIF) is an essential signaling cytokine with a key role in the immune system. Binding of MIF to its molecular targets such as, among others, the cluster of differentiation 74 (CD74) receptor plays a key role in inflammatory diseases and cancer. Therefore, the identification of MIF binding compounds gained importance in drug discovery. In this study, we aimed to discover novel MIF binding compounds by screening of a focused compound collection for inhibition of its tautomerase enzyme activity. Inspired by the known chromen-4-one inhibitor Orita-13, a focused collection of compounds with a chromene scaffold was screened for MIF binding. The library was synthesized using versatile cyanoacetamide chemistry to provide diversely substituted chromenes. The screening provided inhibitors with IC50's in the low micromolar range. Kinetic evaluation suggested that the inhibitors were reversible and did not bind in the binding pocket of the substrate. Thus, we discovered novel inhibitors of the MIF tautomerase activity, which may ultimately support the development of novel therapeutic agents against diseases in which MIF is involved.


Asunto(s)
Benzopiranos/química , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Benzopiranos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Oxidorreductasas Intramoleculares/metabolismo , Cinética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Conformación Molecular , Simulación de Dinámica Molecular , Unión Proteica , Relación Estructura-Actividad
13.
Eur J Med Chem ; 139: 633-643, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28843180

RESUMEN

Human 15-lipoxygenase-1 (h-15-LOX-1) is a promising drug target in inflammation and cancer. In this study substitution-oriented screening (SOS) has been used to identify compounds with a 2-aminopyrrole scaffold as inhibitors for h-15-LOX-1. The observed structure activity relationships (SAR) proved to be relatively flat. IC50's for the most potent inhibitor of the series did not surpass 6.3 µM and the enzyme kinetics demonstrated uncompetitive inhibition. Based on this, we hypothesized that the investigated 2-aminopyrroles are pan assay interference compounds (PAINS) with photoactivation via a radical mechanism. Our results demonstrated clear photoactivation of h-15-LOX-1 inhibition under UV and visible light. In addition, the investigated 2-aminopyrroles decreased viability of cultured human hepatocarcinoma cells HCC-1.2 in a dose-dependent manner with LD50 ranging from 0.55 ± 0.15 µM (21B10) to 2.75 ± 0.91 µM (22). Taken together, this indicates that photoactivation can play an important role in the biological activity of compounds with a 2-amino-pyrrole scaffold as investigated here.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Luz , Pirroles/farmacología , Rayos Ultravioleta , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Rojo Neutro/farmacocinética , Pirroles/síntesis química , Pirroles/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
14.
Eur J Med Chem ; 136: 480-486, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28527406

RESUMEN

Histone acetyltransferases (HATs) are important mediators of epigenetic post-translational modifications of histones that play important roles in health and disease. A disturbance of these modifications can result in disease states, such as cancer or inflammatory diseases. Inhibitors of HATs (HATi) such as lysine (K) acetyltransferase 8 (KAT8), could be used to study the epigenetic processes in diseases related to these enzymes or to investigate HATs as therapeutic targets. However, the development of HATi is challenged by the difficulties in kinetic characterization of HAT enzymes and their inhibitors to enable calculation of a reproducible inhibitory potency. In this study, a fragment screening approach was used, enabling identification of 4-amino-1-naphthol, which potently inhibited KAT8. The inhibitor was investigated for enzyme inhibition using kinetic and calorimetric binding studies. This allowed for calculation of the Ki values for both the free enzyme as well as the acetylated intermediate. Importantly, it revealed a striking difference in binding affinity between the acetylated enzyme and the free enzyme, which could not be revealed by the IC50 value. This shows that kinetic characterization of inhibitors and calculation of Ki values is crucial for determining the binding constants of HAT inhibitors. We anticipate that more comprehensive characterization of enzyme inhibition, as described here, is needed to advance the field of HAT inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Naftoles/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Histona Acetiltransferasas/metabolismo , Humanos , Cinética , Estructura Molecular , Naftoles/síntesis química , Naftoles/química , Relación Estructura-Actividad
15.
Sci Rep ; 7: 45047, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28344354

RESUMEN

Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD.


Asunto(s)
Antiinflamatorios/farmacología , Benzamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Interleucina-10/metabolismo , Macrófagos/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Piridinas/farmacología , Contaminación por Humo de Tabaco/efectos adversos , Animales , Antiinflamatorios/uso terapéutico , Benzamidas/uso terapéutico , Línea Celular , Inhibidores de Histona Desacetilasas/uso terapéutico , Interleucina-10/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/etiología , Piridinas/uso terapéutico
16.
Angew Chem Int Ed Engl ; 55(40): 12300-5, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27612308

RESUMEN

Human 15-lipoxygenase-1 (15-LOX-1) plays an important role in several inflammatory lung diseases, such as asthma, COPD, and chronic bronchitis, as well as various CNS diseases, such as Alzheimer's disease, Parkinson's disease, and stroke. Activity-based probes of 15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery. In this study, we developed a 15-LOX-1 activity-based probe for the efficient activity-based labeling of recombinant 15-LOX-1. 15-LOX-1-dependent labeling in cell lysates and tissue samples was also possible. To mimic the natural substrate of the enzyme, we designed activity-based probes that covalently bind to the active enzyme and include a terminal alkene as a chemical reporter for the bioorthogonal linkage of a detectable functionality through an oxidative Heck reaction. The activity-based labeling of 15-LOX-1 should enable the investigation and identification of this enzyme in complex biological samples, thus opening up completely new opportunities for drug discovery.


Asunto(s)
Alquenos/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Alquenos/química , Animales , Araquidonato 15-Lipooxigenasa/química , Araquidonato 15-Lipooxigenasa/genética , Sitios de Unión , Dominio Catalítico , Células HeLa , Humanos , Cinética , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Miocardio/enzimología , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Relación Estructura-Actividad , Especificidad por Sustrato
17.
Eur J Med Chem ; 122: 786-801, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27477687

RESUMEN

The enzyme 15-lipoxygenase-1 (15-LOX-1) plays a dual role in diseases with an inflammatory component. On one hand 15-LOX-1 plays a role in pro-inflammatory gene expression and on the other hand it has been shown to be involved in central nervous system (CNS) disorders by its ability to mediate oxidative stress and damage of mitochondrial membranes under hypoxic conditions. In order to further explore applications in the CNS, novel 15-LOX-1 inhibitors with favorable physicochemical properties need to be developed. Here, we present Substitution Oriented Screening (SOS) in combination with Multi Component Chemistry (MCR) as an effective strategy to identify a diversely substituted small heterocyclic inhibitors for 15-LOX-1, denoted ThioLox, with physicochemical properties superior to previously identified inhibitors. Ex vivo biological evaluation in precision-cut lung slices (PCLS) showed inhibition of pro-inflammatory gene expression and in vitro studies on neuronal HT-22 cells showed a strong protection against glutamate toxicity for this 15-LOX-1 inhibitor. This provides a novel approach to identify novel small with favorable physicochemical properties for exploring 15-LOX-1 as a drug target in inflammatory diseases and neurodegeneration.


Asunto(s)
Antiinflamatorios/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Lipooxigenasa/metabolismo , Fármacos Neuroprotectores/farmacología , Tiofenos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/metabolismo , Ratones , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Tiofenos/química , Tiofenos/metabolismo
18.
J Med Chem ; 58(19): 7850-62, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26331552

RESUMEN

Human 15-lipoxygenase-1 (h-15-LOX-1) is a mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD, and chronic bronchitis. Novel potent inhibitors of h-15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen-containing heterocycles such as indoles, quinolones, pyrazoles, and others. We denoted this approach substitution-oriented fragment screening (SOS) because it focuses on the identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure-activity relationships (SAR) for h-1-5-LOX-1 inhibition. Molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14 d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate a significant increase of interleukin-10 (IL-10) gene expression, which indicates its anti-inflammatory properties.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Relación Estructura-Actividad , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Araquidonato 15-Lipooxigenasa/química , Evaluación Preclínica de Medicamentos/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Inflamación/tratamiento farmacológico , Inflamación/genética , Pulmón/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular
19.
Eur J Med Chem ; 94: 265-75, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25771032

RESUMEN

Lipoxygenases metabolize polyunsaturated fatty acids into signalling molecules such as leukotrienes and lipoxins. 15-lipoxygenase-1 (15-LOX-1) is an important mammalian lipoxygenase and plays a crucial regulatory role in several respiratory diseases such as asthma, COPD and chronic bronchitis. Novel potent and selective inhibitors of 15-LOX-1 are required to explore the role of this enzyme in drug discovery. In this study we describe structure activity relationships for 6-benzyloxysalicylates as inhibitors of human 15-LOX-1. Kinetic analysis suggests competitive inhibition and the binding model of these compounds can be rationalized using molecular modelling studies. The most potent derivative 37a shows a Ki value of 1.7 µM. These structure activity relationships provide a basis to design improved inhibitors and to explore 15-LOX-1 as a drug target.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/farmacología , Salicilatos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Inhibidores de la Lipooxigenasa/síntesis química , Inhibidores de la Lipooxigenasa/química , Modelos Moleculares , Estructura Molecular , Salicilatos/síntesis química , Salicilatos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...