Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Turk J Haematol ; 40(2): 118-124, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37022209

RESUMEN

Objective: Hemophilia A is an X-linked recessive bleeding disorder caused by a deficiency of plasma coagulation factor VIII (FVIII), and it accounts for about 80%-85% of all cases of hemophilia. Plasma-derived therapies or recombinant FVIII concentrates are used to prevent and treat the bleeding symptoms along with FVIII-mimicking antibodies. Recently, the European Medicines Agency granted conditional marketing approval for the first gene therapy for hemophilia A. The aim of this study was to determine the effectiveness of coagulation in correcting FVIII deficiency with FVIII-secreting transgenic mesenchymal stem cells (MSCs). Materials and Methods: A lentiviral vector encoding a B domain-deleted FVIII cDNA sequence with CD45R0 truncated (CD45R0t) surface marker was designed to develop a transgenic FVIII-expressing primary cell line by transducing MSCs. The efficacy and functionality of the FVIII secreted from the MSCs was assessed with anti-FVIII ELISA, CD45R0t flow cytometry, FVIII western blot, and mixing test analysis in vitro. Results: The findings of this study showed that the transgenic MSCs maintained persistent FVIII secretion. There was no significant difference in FVIII secretion over time, suggesting stable FVIII expression from the MSCs. The functionality of the FVIII protein secreted in the MSC supernatant was demonstrated by applying a mixing test in coagulation analysis. In the mixing test analysis, FVIII-deficient human plasma products were mixed with either a saline control or FVIII-secreted MSC supernatant. The mean FVIII level of the saline control group was 0.41±0.03 IU/dL, whereas the mean level was 25.41±33.38 IU/dL in the FVIII-secreting MSC supernatant mixed group (p<0.01). The mean activated partial thromboplastin time (aPTT) of the saline control group was 92.69±11.38 s, while in the FVIII-secreting MSC supernatant mixed group, the mean aPTT level decreased to 38.60±13.38 s (p<0.001). Conclusion: The findings of this in vitro study suggest that the new method presented here is promising as a possible treatment for hemophilia A. Accordingly, a study of FVIII-secreting transgenic MSCs will next be initiated in a FVIII-knockout animal model.


Asunto(s)
Hemofilia A , Células Madre Mesenquimatosas , Animales , Humanos , Factor VIII/genética , Hemofilia A/genética , Hemofilia A/terapia , Coagulación Sanguínea , Terapia Genética/métodos , Células Madre Mesenquimatosas/metabolismo
2.
Turk J Haematol ; 39(3): 206-210, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35848614

RESUMEN

Objective: Chimeric antigen receptor T (CAR-T) cell therapies have already made an impact on the treatment of B-cell malignancies. Although CAR-T cell therapies are promising, there are concerns about commercial products regarding their affordability and sustainability. In this preliminary study, the results of the first production and clinical data of an academic CAR-T cell (ISIKOK-19) trial in Turkey are presented. Materials and Methods: A pilot clinical trial (NCT04206943) designed to assess the safety and feasibility of ISIKOK-19 T-cell therapy for patients with relapsed and refractory CD19+ tumors was conducted and participating patients received ISIKOK-19 infusions between October 2019 and July 2021. The production data of the first 8 patients and the clinical outcome of 7 patients who received ISIKOK-19 cell infusions are presented in this study. Results: Nine patients were enrolled in the trial [5 with acute lymphoblastic leukemia (ALL) and 4 with non-Hodgkin lymphoma (NHL)], but only 7 patients could receive treatment. Two of the 3 participating ALL patients and 3 of the 4 NHL patients had complete/partial response (overall response rate: 72%). Four patients (57%) had CAR-T-related toxicities (cytokine release syndrome, CAR-T-related encephalopathy syndrome, and pancytopenia). Two patients were unresponsive and had progressive disease following CAR-T therapy. Two patients with partial response had progressive disease during follow-up. Conclusion: Production efficacy and fulfillment of the criteria of quality control were satisfactory for academic production. Response rates and toxicity profiles were also acceptable for this heavily pretreated/refractory patient group. ISIKOK-19 cells appear to be a safe, economical, and efficient treatment option for CD19+ tumors. However, the findings of this study need to be supported by the currently ongoing ISIKOK-19 clinical trial.


Asunto(s)
Linfoma no Hodgkin , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma no Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Turquía/epidemiología
3.
Sci Rep ; 11(1): 15799, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349145

RESUMEN

The SARS-CoV-2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A and smallpox proved to be reliable approaches for immunization for prolonged periods. In this study, a gamma-irradiated inactivated virus vaccine does not require an extra purification process, unlike the chemically inactivated vaccines. Hence, the novelty of our vaccine candidate (OZG-38.61.3) is that it is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. Efficiency and safety dose (either 1013 or 1014 viral RNA copy per dose) of OZG-38.61.3 was initially determined in BALB/c mice. This was followed by testing the immunogenicity and protective efficacy of the vaccine. Human ACE2-encoding transgenic mice were immunized and then infected with the SARS-CoV-2 virus for the challenge test. This study shows that vaccinated mice have lowered SARS-CoV-2 viral RNA copy numbers both in oropharyngeal specimens and in the histological analysis of the lung tissues along with humoral and cellular immune responses, including the neutralizing antibodies similar to those shown in BALB/c mice without substantial toxicity. Subsequently, plans are being made for the commencement of Phase 1 clinical trial of the OZG-38.61.3 vaccine for the COVID-19 pandemic.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Citocinas/metabolismo , Relación Dosis-Respuesta Inmunológica , Rayos gamma , Humanos , Inmunidad , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , ARN Viral , SARS-CoV-2/efectos de la radiación , Vacunación , Vacunas de Productos Inactivados/inmunología , Células Vero , Replicación Viral
4.
Sci Rep ; 11(1): 5804, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707532

RESUMEN

COVID-19 outbreak caused by SARS-CoV-2 created an unprecedented health crisis since there is no vaccine for this novel virus. Therefore, SARS-CoV-2 vaccines have become crucial for reducing morbidity and mortality. In this study, in vitro and in vivo safety and efficacy analyzes of lyophilized vaccine candidates inactivated by gamma-irradiation were performed. The candidate vaccines in this study were OZG-3861 version 1 (V1), an inactivated SARS-CoV-2 virus vaccine, and SK-01 version 1 (V1), a GM-CSF adjuvant added vaccine. The candidate vaccines were applied intradermally to BALB/c mice to assess toxicity and immunogenicity. Preliminary results in vaccinated mice are reported in this study. Especially, the vaccine models containing GM-CSF caused significant antibody production with neutralization capacity in absence of the antibody-dependent enhancement feature, when considered in terms of T and B cell responses. Another important finding was that the presence of adjuvant was more important in T cell in comparison with B cell response. Vaccinated mice showed T cell response upon restimulation with whole inactivated SARS-CoV-2 or peptide pool. This study shows that the vaccines are effective and leads us to start the challenge test to investigate the gamma-irradiated inactivated vaccine candidates for infective SARS-CoV-2 virus in humanized ACE2 + mice.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Vacunas de Productos Inactivados/inmunología , Animales , Vacunas contra la COVID-19/toxicidad , Femenino , Rayos gamma , Genoma Viral , Humanos , Masculino , Ratones Endogámicos BALB C , SARS-CoV-2/genética , Vacunas de Productos Inactivados/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...