Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 43(9): 1293-1305, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36908029

RESUMEN

We recently developed a rat whole exome sequencing (WES) panel and used it to evaluate early somatic mutations in archival liver tissues from F344/N rats exposed to the hepatocarcinogen, Aflatoxin B1 (AFB1), a widely studied, potent mutagen and hepatocarcinogen associated with hepatocellular carcinoma (HCC). Rats were exposed to 1-ppm AFB1 in feed for 14, 90, and 90 days plus a recovery 60-day, non-exposure period (150-day) timepoint. Isolated liver DNA was exome sequenced. We identified 172 sequence variants across all timepoints, of which 101 were non-synonymous variants. Well-annotated genes carried a diverse set of 29 non-synonymous mutations at 14 days, increasing to 39 mutations at 90 days and then decreasing to 33 mutations following the 60-day recovery. Gene Set Enrichment Analysis conducted on previously reported, available RNA expression data of the same exome sequenced archival samples identified altered transcripts in pathways associated with malignant transformation. These included HALLMARK gene sets associated with cell proliferation (MYC Targets Version 1 and Version 2, E2F targets), cell cycle (G2M checkpoint, mitotic spindle), cell death (apoptosis), and DNA damage (DNA repair, UV response Up, Reactive oxygen species) pathways. DriverNet Impact analysis integrated exome-seq and expression data to reveal somatic mutations in Mcm8, Bdp1, and Cct6a that may drive cancer formation. Connectivity with transcript expression changes identified these genes as the top-ranked candidate driver genes associated with hepatocellular transformation. In conclusion, exome sequencing revealed early somatic mutations that may play a role in cancer cell transformation that are translatable to aflatoxin-induced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Aflatoxina B1/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Exoma/genética , Ratas Endogámicas F344 , Hígado/metabolismo , Transformación Celular Neoplásica/inducido químicamente
2.
Biol Reprod ; 105(6): 1603-1616, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34518881

RESUMEN

Aurora A kinase (AURKA) is an important regulator of cell division and is required for assembly of the mitotic spindle. We recently reported the unusual finding that this mitotic kinase is also found on the sperm flagellum. To determine its requirement in spermatogenesis, we generated conditional knockout animals with deletion of the Aurka gene in either spermatogonia or spermatocytes to assess its role in mitotic and postmitotic cells, respectively. Deletion of Aurka in spermatogonia resulted in disappearance of all developing germ cells in the testis, as expected, given its vital role in mitotic cell division. Deletion of Aurka in spermatocytes reduced testis size, sperm count, and fertility, indicating disruption of meiosis or an effect on spermiogenesis in developing mice. Interestingly, deletion of Aurka in spermatocytes increased apoptosis in spermatocytes along with an increase in the percentage of sperm with abnormal morphology. Despite the increase in abnormal sperm, sperm from spermatocyte Aurka knockout mice displayed increased progressive motility. In addition, sperm lysate prepared from Aurka knockout animals had decreased protein phosphatase 1 (PP1) activity. Together, our results show that AURKA plays multiple roles in spermatogenesis, from mitotic divisions of spermatogonia to sperm morphology and motility.


Asunto(s)
Aurora Quinasa A/genética , Ratones/fisiología , Motilidad Espermática/genética , Espermatozoides/enzimología , Testículo/crecimiento & desarrollo , Animales , Aurora Quinasa A/deficiencia , Aurora Quinasa A/metabolismo , Masculino , Ratones/genética , Ratones Noqueados , Espermatogénesis/genética
3.
Physiol Rep ; 9(15): e14993, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34350716

RESUMEN

Cell-free DNA circulates in plasma at low levels as a normal by-product of cellular apoptosis. Multiple clinical pathologies, as well as environmental stressors can lead to increased circulating cell-free DNA (ccfDNA) levels. Plasma DNA studies frequently employ targeted amplicon deep sequencing platforms due to limited concentrations (ng/ml) of ccfDNA in the blood. Here, we report whole genome sequencing (WGS) and read distribution across chromosomes of ccfDNA extracted from two human plasma samples from normal, healthy subjects, representative of limited clinical samples at <1 ml. Amplification was sufficiently robust with ~90% of the reference genome (GRCh38.p2) exhibiting 10X coverage. Chromosome read coverage was uniform and directly proportional to the number of reads for each chromosome across both samples. Almost 99% of the identified genomic sequence variants were known annotated dbSNP variants in the hg38 reference genome. A high prevalence of C>T and T>C mutations was present along with a strong concordance of variants shared between the germline genome databases; gnomAD (81.1%) and the 1000 Genome Project (93.6%). This study demonstrates isolation and amplification procedures from low input ccfDNA samples that can detect sequence variants across the whole genome from amplified human plasma ccfDNA that can translate to multiple clinical research disciplines.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Cromosomas Humanos/genética , Genoma Humano , Mutación , Secuenciación Completa del Genoma/métodos , Humanos
4.
Scand J Med Sci Sports ; 31(10): 1914-1920, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34170573

RESUMEN

Ultrasound Tissue Characterization (UTC) is a modality that can be utilized to characterize tendon tissue structure using ultrasonographic imaging paired with a computer algorithm to distinguish echo-types. Several studies have demonstrated UTCs ability to distinguish Achilles tendon morphology changes, but no study has established normative data of the Achilles tendon in the general population. The aim of this study was to determine UTC echo-type distribution in the Achilles tendon in an asymptomatic population. UTC scans were completed and analyzed on 508 participants without Achilles tendinopathy. Dedicated UTC-algorithms were used to distinguish and calculate echo-type percentages and the fiber type distribution was compared. The overall sample echo-type percentages demonstrated greater levels of Type I and II echo-types, 65.73% and 32.00%, respectively, and lower levels of Type III and IV echo-types, 1.74% and 0.57%, respectively. In addition, females had lower levels of Echo-type I compared to men and greater levels of echo-type II (p < 0.001). We also found that African-Americans had significantly greater amounts of echo-type I and lesser amounts of echo-type II when compared to Caucasians (p < 0.05). The results of this study create a normative data set for future UTC studies to utilize as a baseline for the evaluation of Achilles tendons. In addition, it demonstrated tendon type differences between sexes and races that need to be accounted for in future studies.


Asunto(s)
Tendón Calcáneo/anatomía & histología , Tendón Calcáneo/diagnóstico por imagen , Ultrasonografía , Adolescente , Adulto , Anciano , Enfermedades Asintomáticas , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...