Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802993

RESUMEN

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.

2.
J Cent Nerv Syst Dis ; 16: 11795735241247810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655152

RESUMEN

Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated. Therefore, this review aimed to revise the mechanistic pathway of p75NTR in epilepsy.


Roles of p75 neurotrophin receptor (p75NTR) in epilepsy: Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated.

3.
Immun Inflamm Dis ; 11(11): e1100, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38018575

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by severe acute respiratory syndrome CoV type 2 (SARS-CoV-2). COVID-19 is higher in men than women and sex hormones have immune-modulator effects during different viral infections, including SARS-CoV-2 infection. One of the essential sex hormones is progesterone (P4). AIMS: This review aimed to reveal the association between P4 and Covid-19. RESULTS AND DISCUSSION: The possible role of P4 in COVID-19 could be beneficial through the modulation of inflammatory signaling pathways, induction of the release of anti-inflammatory cytokines, and inhibition release of pro-inflammatory cytokines. P4 stimulates skew of naïve T cells from inflammatory Th1 toward anti-inflammatory Th2 with activation release of anti-inflammatory cytokines, and activation of regulatory T cells (Treg) with decreased interferon-gamma production that increased during SARS-CoV-2 infection. In addition, P4 is regarded as a potent antagonist of mineralocorticoid receptor (MR), it could reduce MRs that were activated by stimulated aldosterone from high AngII during SARS-CoV-2. P4 active metabolite allopregnanolone is regarded as a neurosteroid that acts as a positive modulator of γ-aminobutyric acid (GABAA ) so it may reduce neuropsychiatric manifestations and dysautonomia in COVID-19 patients. CONCLUSION: Taken together, the anti-inflammatory and immunomodulatory properties of P4 may improve central and peripheral complications in COVID-19.


Asunto(s)
COVID-19 , Masculino , Humanos , Femenino , Progesterona/uso terapéutico , SARS-CoV-2 , Citocinas , Antiinflamatorios/uso terapéutico
4.
Cell Mol Neurobiol ; 43(7): 3405-3416, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540395

RESUMEN

Hypothyroidism (HPT) HPT could be a risk factor for the development and progression of Alzheimer's disease (AD). In addition, progressive neurodegeneration in AD may affect the metabolism of thyroid hormones (THs) in the brain causing local brain HPT. Hence, the present review aimed to clarify the potential association between HPT and AD. HPT promotes the progression of AD by inducing the production of amyloid beta (Aß) and tau protein phosphorylation with the development of synaptic plasticity and memory dysfunction. Besides, the metabolism of THs is dysregulated in AD due to the accumulation of Aß and tau protein phosphorylation leading to local brain HPT. Additionally, HPT can affect AD neuropathology through various mechanistic pathways including dysregulation of transthyretin, oxidative stress, ER stress, autophagy dysfunction mitochondrial dysfunction, and inhibition of brain-derived neurotrophic factor. Taken together there is a potential link between HPT and AD, as HPT adversely impacts AD neuropathology and the reverse is also true.


Asunto(s)
Enfermedad de Alzheimer , Hipotiroidismo , Humanos , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipotiroidismo/complicaciones , Hipotiroidismo/metabolismo , Hipotiroidismo/patología
5.
Neurochem Res ; 48(11): 3255-3269, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37442896

RESUMEN

Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Esclerosis Múltiple/metabolismo , Fibrinógeno/metabolismo , Fibrinógeno/farmacología , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Vaina de Mielina/metabolismo , Miedo
6.
Metab Brain Dis ; 38(6): 1831-1840, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335452

RESUMEN

Vinpocetine (VPN) is an ethyl apovincaminate that has anti-inflammatory and antioxidant effects by inhibiting the expression of nuclear factor kappa B (NF-κB) and phosphodiesterase enzyme 1 (PDE-1). VPN is used in the management of stroke, dementia, and other neurodegenerative brain diseases. VPN may be effective in treating Parkinson's disease (PD). Therefore, this review aimed to clarify the mechanistic role of VPN in the management of PD. VPN has protective and restorative effects against neuronal injury by reducing neuroinflammation, and improvement of synaptic plasticity and cerebral blood flow. VPN protects dopaminergic neurons by reducing oxidative stress, lipid peroxidation, glutamate neurotoxicity, and regulation of Ca+ 2 overloads. VPN can alleviate PD neuropathology through its anti-inflammatory, antioxidant, antiapoptotic and neurogenic effects. VPN through inhibition of PDE1 improves cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP) signaling in the dopaminergic neurons of the substantia nigra (SN). VPN improves PD neuropathology through PDE1 inhibition with a subsequent increase of the cAMP/cGMP signaling pathway. Therefore, increasing cAMP leads to antioxidant effects, while augmentation of cGMP by VPN leads to anti-inflammatory effects which reduced neurotoxicity and development of motor severity in PD. In conclusion, this review indicated that VPN could be effective in the management of PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Alcaloides de la Vinca , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Antioxidantes , Alcaloides de la Vinca/farmacología , Alcaloides de la Vinca/uso terapéutico , Neuronas Dopaminérgicas
7.
Trop Anim Health Prod ; 53(2): 265, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33864535

RESUMEN

BACKGROUND: Bronchial-associated lymphoid tissue (BALT) is responsible for the local immune response of the lung against airborne infections. The structure of this tissue varies according to species and age. AIM: The aim of this study was to describe the possible age-related structural variation of the BALT of the one humped camel. MATERIAL AND METHODS: Fresh specimens from both lungs of 15 clinically healthy male camels (10 months-12 years) were studied with light and electron microscopes. RESULTS: The BALT in the camel was variable from few lymphocytes to well-organized lymphoid tissue with a clear germinal center. The BALT of the bronchi is a constant lymphoid tissue in young and adult camels which may be of the large size with clear germinal center in response to repeated immune reaction and involutes in old age. The BALT of the bronchioles may be induced and develops mainly due to an immune reaction and showed great morphological variations and observed in different ages. High endothelial venules were associated with BALT in the bronchi but not with that of the bronchioles. The BALT-associated epithelium was tall pseudostratified columnar ciliated epithelium with goblet cells in the extrapulmonary bronchi changed to pseudostratified columnar ciliated epithelium mucous secreting cells in the intrapulmonary bronchi and simple columnar ciliated to simple cuboidal epithelium with Clara cells without goblet cells or mucous secreting cells in the bronchioles. CONCLUSIONS: The BALT of the bronchi is a constant lymphoid tissue in young and adult camels and involutes in old age. The BALT of the bronchioles may be induced and develops mainly due to an immune reaction and observed in different ages.


Asunto(s)
Bronquios , Camelus , Animales , Epitelio , Pulmón , Tejido Linfoide , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...