Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377397

RESUMEN

Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. Here, we explored pre-B cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-seq analysis uncovered PBX1 binding to numerous genomic sites. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass spectrometry. Whole transcriptome spatial RNA analysis revealed shared expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3 and TCF4. RNA-seq following Pbx1, Tcf3 or Tcf4 knockdown identified proliferation- and differentiation associated genes as shared targets, while sphere formation assays following knockdown argued for functional cooperativity of PBX1 and TCF3 in progenitor cell proliferation. Notably, while physiological PBX1-TCF interaction has not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre-B cell line expressing TCF3 but lacking PBX1, upregulated the leukemogenic genes BLK and NOTCH3, arguing that functional PBX1-TCF cooperativity likely extends to hematopoiesis. Our study hence uncovers a transcriptional module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with potential implications for leukemia etiology.

2.
Sci Signal ; 17(854): eabq4888, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288218

RESUMEN

Doublecortin-like kinase 1 (DCLK1) is a proposed driver of gastric cancer (GC) that phosphorylates serine and threonine residues. Here, we showed that the kinase activity of DCLK1 orchestrated cancer cell-intrinsic and-extrinsic processes that led to pro-invasive and pro-metastatic reprogramming of GC cells. Inhibition of the kinase activity of DCLK1 reduced the growth of subcutaneous xenograft tumors formed from MKN1 human gastric carcinoma cells in mice and decreased the abundance of the stromal markers α-Sma, vimentin, and collagen. Similar effects were seen in mice with xenograft tumors formed from MKN1 cells expressing a kinase-inactive DCLK1 mutant (MKN1D511N). MKN1D511N cells also had reduced in vitro migratory potential and stemness compared with control cells. Mice orthotopically grafted with MKN1 cells overexpressing DCLK1 (MKN1DCLK1) showed increased invasiveness and had a greater incidence of lung metastases compared with those grafted with control MKN1 cells. Mechanistically, we showed that the chemokine CXCL12 acted downstream of DCLK1 in cultured MKN1 cells and in mice subcutaneously implanted with gastric tumors formed by MKN1DCLK1 cells. Moreover, inhibition of the kinase activity of DCLK1 or the expression of DCLK1D511N reversed the pro-tumorigenic and pro-metastatic phenotype. Together, this study establishes DCLK1 as a broadly acting and potentially targetable promoter of GC.


Asunto(s)
Progresión de la Enfermedad , Quinasas Similares a Doblecortina , Péptidos y Proteínas de Señalización Intracelular , Fenotipo , Proteínas Serina-Treonina Quinasas , Neoplasias Gástricas , Quinasas Similares a Doblecortina/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Animales , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo
3.
BMC Genomics ; 24(1): 382, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420172

RESUMEN

BACKGROUND: Genomics data is available to the scientific community after publication of research projects and can be investigated for a multitude of research questions. However, in many cases deposited data is only assessed and used for the initial publication, resulting in valuable resources not being exploited to their full depth. MAIN: A likely reason for this is that many wetlab-based researchers are not formally trained to apply bioinformatic tools and may therefore assume that they lack the necessary experience to do so themselves. In this article, we present a series of freely available, predominantly web-based platforms and bioinformatic tools that can be combined in analysis pipelines to interrogate different types of next-generation sequencing data. Additionally to the presented exemplary route, we also list a number of alternative tools that can be combined in a mix-and-match fashion. We place special emphasis on tools that can be followed and used correctly without extensive prior knowledge in programming. Such analysis pipelines can be applied to existing data downloaded from the public domain or be compared to the results of own experiments. CONCLUSION: Integrating transcription factor binding to chromatin (ChIP-seq) with transcriptional output (RNA-seq) and chromatin accessibility (ATAC-seq) can not only assist to form a deeper understanding of the molecular interactions underlying transcriptional regulation but will also help establishing new hypotheses and pre-testing them in silico.


Asunto(s)
Biología Computacional , Genómica , Biología Computacional/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Inmunoprecipitación de Cromatina , RNA-Seq
4.
Front Cell Dev Biol ; 9: 648765, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33768097

RESUMEN

Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome's sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA