Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 156(2): 411-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25456065

RESUMEN

The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure (EE) and brown adipose tissue thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from single-minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-knockout [KO]) had food intake, body weight, adiposity, glucose metabolism, and EE comparable with wild-type (WT) (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity, and increased EE, whereas feeding behavior was similar to Sim1-CB1-WT mice. Additionally, high-fat diet-fed Sim1-CB1-KO mice had increased mRNA expression of the ß3-adrenergic receptor, as well as of uncoupling protein-1, cytochrome-c oxidase subunit IV and mitochondrial transcription factor A in the brown adipose tissue, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using ß-blockers suggested that modulation of ß-adrenergic transmission play an important role in determining EE changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and EE, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake but hinder EE during dietary environmental challenges that promote body weight gain.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Metabolismo Energético , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor Cannabinoide CB1/metabolismo , Proteínas Represoras/metabolismo , Animales , Masculino , Ratones Noqueados , Obesidad/metabolismo , Sistema Nervioso Simpático/metabolismo
2.
Mol Metab ; 3(7): 705-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25352999

RESUMEN

Metabolic flexibility allows rapid adaptation to dietary change, however, little is known about the CNS mechanisms regulating this process. Neurons in the hypothalamic ventromedial nucleus (VMN) participate in energy balance and are the target of the metabolically relevant hormone leptin. Cannabinoid type-1 (CB1) receptors are expressed in VMN neurons, but the specific contribution of endocannabinoid signaling in this neuronal population to energy balance regulation is unknown. Here we demonstrate that VMN CB1 receptors regulate metabolic flexibility and actions of leptin. In chow-fed mice, conditional deletion of CB1 in VMN neurons (expressing the steroidogenic factor 1, SF1) decreases adiposity by increasing sympathetic activity and lipolysis, and facilitates metabolic effects of leptin. Conversely, under high-fat diet, lack of CB1 in VMN neurons produces leptin resistance, blunts peripheral use of lipid substrates and increases adiposity. Thus, CB1 receptors in VMN neurons provide a molecular switch adapting the organism to dietary change.

3.
Obesity (Silver Spring) ; 22(3): 713-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23894080

RESUMEN

OBJECTIVE: High-protein diets favor weight loss and its maintenance. Whether these effects might be recapitulated by certain amino acids is unknown. Therefore, the impact of leucine supplementation on energy balance and associated metabolic changes in diet-induced obese (DIO) mice during and after weight loss was investigated. METHODS: DIO C57BL/6J mice were fed a normocaloric diet to induce weight loss while receiving or not the amino acid leucine in drinking water. Body weight, food intake, body composition, energy expenditure, glucose tolerance, insulin, and leptin sensitivity were evaluated. Q-PCR analysis was performed on muscle, brown and white adipose tissues. RESULTS: DIO mice decreased body weight and fat mass in response to chow, but supplementation with leucine did not affect these parameters. During weight maintenance, mice supplemented with leucine had improved glucose tolerance, increased leptin sensitivity, and lower respiratory quotient. The latter was associated with changes in the expression of several genes modulating fatty acid metabolism and mitochondrial activity in the epididymal white and the brown adipose tissues, but not muscle. CONCLUSIONS: Leucine supplementation might represent an adjuvant beneficial nutritional therapy during weight loss and maintenance, because it improves lipid and glucose metabolism and restores leptin sensitivity in previously obese animals.


Asunto(s)
Glucemia/metabolismo , Suplementos Dietéticos , Leucina/administración & dosificación , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Composición Corporal , Calorimetría Indirecta , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Leptina/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Pérdida de Peso
4.
PLoS One ; 8(9): e74705, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086364

RESUMEN

BACKGROUND: Leucine supplementation might have therapeutic potential in preventing diet-induced obesity and improving insulin sensitivity. However, the underlying mechanisms are at present unclear. Additionally, it is unclear whether leucine supplementation might be equally efficacious once obesity has developed. METHODOLOGY/PRINCIPAL FINDINGS: Male C57BL/6J mice were fed chow or a high-fat diet (HFD), supplemented or not with leucine for 17 weeks. Another group of HFD-fed mice (HFD-pairfat group) was food restricted in order to reach an adiposity level comparable to that of HFD-Leu mice. Finally, a third group of mice was exposed to HFD for 12 weeks before being chronically supplemented with leucine. Leucine supplementation in HFD-fed mice decreased body weight and fat mass by increasing energy expenditure, fatty acid oxidation and locomotor activity in vivo. The decreased adiposity in HFD-Leu mice was associated with increased expression of uncoupling protein 3 (UCP-3) in the brown adipose tissue, better insulin sensitivity, increased intestinal gluconeogenesis and preservation of islets of Langerhans histomorphology and function. HFD-pairfat mice had a comparable improvement in insulin sensitivity, without changes in islets physiology or intestinal gluconeogenesis. Remarkably, both HFD-Leu and HFD-pairfat mice had decreased hepatic lipid content, which likely helped improve insulin sensitivity. In contrast, when leucine was supplemented to already obese animals, no changes in body weight, body composition or glucose metabolism were observed. CONCLUSIONS/SIGNIFICANCE: These findings suggest that leucine improves insulin sensitivity in HFD-fed mice by primarily decreasing adiposity, rather than directly acting on peripheral target organs. However, beneficial effects of leucine on intestinal gluconeogenesis and islets of Langerhans's physiology might help prevent type 2 diabetes development. Differently, metabolic benefit of leucine supplementation is lacking in already obese animals, a phenomenon possibly related to the extent of the obesity before starting the supplementation.


Asunto(s)
Adiposidad/efectos de los fármacos , Suplementos Dietéticos , Resistencia a la Insulina , Leucina/farmacología , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Insulina/farmacología , Leucina/sangre , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...