Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 12(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37109282

RESUMEN

Shoulder pain and dysfunction may significantly impact quality of life. If conservative measures fail, advanced disease is frequently treated with shoulder arthroplasty, which is currently the third most common joint replacement surgery following the hip and knee. The main indications for shoulder arthroplasty include primary osteoarthritis, post-traumatic arthritis, inflammatory arthritis, osteonecrosis, proximal humeral fracture sequelae, severely dislocated proximal humeral fractures, and advanced rotator cuff disease. Several types of anatomic arthroplasties are available, such as humeral head resurfacing and hemiarthroplasties, as well as total anatomic arthroplasties. Reverse total shoulder arthroplasties, which reverse the normal ball-and-socket geometry of the shoulder, are also available. Each of these arthroplasty types has specific indications and unique complications in addition to general hardware-related or surgery-related complications. Imaging-including radiography, ultrasonography, computed tomography, magnetic resonance imaging, and, occasionally, nuclear medicine imaging-has a key role in the initial pre-operative evaluation for shoulder arthroplasty, as well as in post-surgical follow-up. This review paper aims to discuss important pre-operative imaging considerations, including rotator cuff evaluation, glenoid morphology, and glenoid version, as well as to review post-operative imaging of the various types of shoulder arthroplasties, to include normal post-operative appearances as well as imaging findings of complications.

2.
Acta Med Acad ; 50(2): 277-291, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34847680

RESUMEN

The aim of this paper is to describe the varying clinical and imaging manifestations of Osteogenesis Imperfecta (OI) in the fetus, the child, and the adult. OI is a genetic disorder with mutation of Type 1 and non-type 1 collagen genes that results in disruption of multiple collagen based organ systems, most notably bones, often leading to "brittle bones". Additional features such as blue sclera, dentinogenesis imperfecta, joint and ligamentous hyperlaxity, hearing loss and cardiac defects may be present. Currently, there are at least 30 recognized genetic forms of OI. Given the multiple genes involved, variable genetic inheritance, and the wide range in phenotype, diagnosis can be challenging. While OI may sometimes be diagnosed in the fetus, patients with mild forms of OI may be diagnosed in childhood or even in adulthood. Imaging, including ultrasound, radiography, computed tomography, and magnetic resonance imaging, plays an important role in the diagnoses of OI in the fetus, the child, and the adult. Imaging is also crucial in identifying the many multisystem manifestations of OI. In particular, imaging can help differentiate manifestations of OI from injuries sustained in non-accidental trauma. Age, severity and manner of presentation of OI vary broadly depending on the specific genetic mutation involved, mode of inheritance, and age of the patient. Successful diagnosis of OI hinges on a detailed knowledge of the variable presentation and complications that may be encountered with this disease. CONCLUSION: In conclusion, OI comprises a heterogeneous group of genetic disorders responsible for bone fragility and additional connective tissue disorders, which can result in specific clinical and imaging findings in the fetus, the child, and the adult.


Asunto(s)
Inestabilidad de la Articulación , Osteogénesis Imperfecta , Adulto , Feto , Humanos , Mutación , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/genética , Radiografía
3.
J Clin Med ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011907

RESUMEN

Gout, a crystalline arthropathy caused by the deposition of monosodium urate crystals in the articular and periarticular soft tissues, is a frequent cause of painful arthropathy. Imaging has an important role in the initial evaluation as well as the treatment and follow up of gouty arthropathy. The imaging findings of gouty arthropathy on radiography, ultrasonography, computed tomography, dual energy computed tomography, and magnetic resonance imaging are described to include findings of the early, acute and chronic phases of gout. These findings include early monosodium urate deposits, osseous erosions, and tophi, which may involve periarticular tissues, tendons, and bursae. Treatment of gout includes non-steroidal anti-inflammatories, colchicine, glucocorticoids, interleukin-1 inhibitors, xanthine oxidase inhibitors, uricosuric drugs, and recombinant uricase. Imaging is critical in monitoring response to therapy; clinical management can be modulated based on imaging findings. This review article describes the current standard of care in imaging and treatment of gouty arthropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA