Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Med ; 10(21): 7692-7711, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34581028

RESUMEN

BACKGROUND: Cancer resequencing studies have revealed epigenetic enzymes as common targets for recurrent mutations. The monomethyltransferase MLL3 is among the most recurrently mutated enzymes in ER+ breast cancer. The H3K4me1 marks created by MLL3 can define enhancers. In ER+ breast cancer, ERα genome-binding sites are primarily distal enhancers. Thus, we hypothesize that mutation of MLL3 will alter the genomic binding and transcriptional regulatory activity of ERα. METHODS: We investigated the genomic consequences of knocking down MLL3 in an MLL3/PIK3CA WT ER+ breast cancer cell line. RESULTS: Loss of MLL3 led to a large loss of H3K4me1 across the genome, and a shift in genomic location of ERα-binding sites, which was accompanied by a re-organization of the breast cancer transcriptome. Gene set enrichment analyses of ERα-binding sites in MLL3 KD identified endocrine therapy resistance terms, and we showed that MLL3 KD cells are resistant to tamoxifen and fulvestrant. Many differentially expressed genes are controlled by the small collection of new locations of H3K4me1 deposition and ERα binding, suggesting that loss of functional MLL3 leads to new transcriptional regulation of essential genes. Motif analysis of RNA-seq and ChIP-seq data highlighted SP1 as a critical transcription factor in the MLL3 KD cells. Differentially expressed genes that display a loss of ERα binding upon MLL3 KD also harbor increased SP1 binding. CONCLUSIONS: Our data show that a decrease in functional MLL3 leads to endocrine therapy resistance. This highlights the importance of genotyping patient tumor samples for MLL3 mutation upon initial resection, prior to deciding upon treatment plans.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Sitios de Unión , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptor alfa de Estrógeno/metabolismo , Femenino , Fulvestrant/uso terapéutico , Humanos , Tamoxifeno/uso terapéutico
2.
Oncogene ; 40(20): 3593-3609, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931740

RESUMEN

The SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5. We show that MYC binds the pan-SWI/SNF subunit BAF155 through the BAF155 SWIRM domain, an interaction that is inhibited by the presence of SNF5. In SNF5-null cells, MYC binds with remaining SWI/SNF components to essential genes, although for a purpose that is distinct from chromatin remodeling. Analysis of MYC-SWI/SNF target genes in SNF5-null cells reveals that they are associated with core biological functions of MYC linked to protein synthesis. These data reveal that MYC can bind SWI/SNF in an SNF5-independent manner and that SNF5 modulates access of MYC to core SWI/SNF complexes. This work provides a framework in which to interrogate the influence of SWI/SNF on MYC function in cancers in which SWI/SNF or MYC are altered.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína SMARCB1/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteína SMARCB1/genética , Factores de Transcripción/genética
3.
Mol Cancer Ther ; 19(12): 2454-2464, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33033174

RESUMEN

Although new drug discoveries are revolutionizing cancer treatments, repurposing existing drugs would accelerate the timeline and lower the cost for bringing treatments to cancer patients. Our goal was to repurpose CPI211, a potent and selective antagonist of the thromboxane A2-prostanoid receptor (TPr), a G-protein-coupled receptor that regulates coagulation, blood pressure, and cardiovascular homeostasis. To identify potential new clinical indications for CPI211, we performed a phenome-wide association study (PheWAS) of the gene encoding TPr, TBXA2R, using robust deidentified health records and matched genomic data from more than 29,000 patients. Specifically, PheWAS was used to identify clinical manifestations correlating with a TBXA2R single-nucleotide polymorphism (rs200445019), which generates a T399A substitution within TPr that enhances TPr signaling. Previous studies have correlated 200445019 with chronic venous hypertension, which was recapitulated by this PheWAS analysis. Unexpectedly, PheWAS uncovered an rs200445019 correlation with cancer metastasis across several cancer types. When tested in several mouse models of metastasis, TPr inhibition using CPI211 potently blocked spontaneous metastasis from primary tumors, without affecting tumor cell proliferation, motility, or tumor growth. Further, metastasis following intravenous tumor cell delivery was blocked in mice treated with CPI211. Interestingly, TPr signaling in vascular endothelial cells induced VE-cadherin internalization, diminished endothelial barrier function, and enhanced transendothelial migration by tumor cells, phenotypes that were decreased by CPI211. These studies provide evidence that TPr signaling promotes cancer metastasis, supporting the study of TPr inhibitors as antimetastatic agents and highlighting the use of PheWAS as an approach to accelerate drug repurposing.


Asunto(s)
Antineoplásicos/farmacología , Reposicionamiento de Medicamentos , Estudio de Asociación del Genoma Completo/métodos , Receptores de Tromboxanos/antagonistas & inhibidores , Receptores de Tromboxanos/genética , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metástasis de la Neoplasia , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de Tromboxanos/metabolismo
4.
Oncotarget ; 10(52): 5389-5402, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31595181

RESUMEN

Cancers often overexpress anti-apoptotic Bcl-2 proteins for cell death evasion, a recognized hallmark of cancer progression. While estrogen receptor (ER)-α+ breast cancers express high levels of three anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-xL, and Mcl-1), pharmacological inhibition of Bcl-2 and/or Bcl-xL fails to induce cell death in ERα+ breast cancer cell lines, due to rapid and robust Mcl-1 upregulation. The mechanisms of acute Mcl-1 upregulation in response to Bcl-2/Bcl-xL inhibition remain undefined in in ERα+ breast cancers. We report here that blockade of Bcl-2 or Bcl-xL, alone or together, rapidly induced mTOR signaling in ERα+ breast cancer cells, rapidly increasing cap-dependent Mcl-1 translation. Cells treated with a pharmacological inhibitor of cap-dependent translation, or with the mTORC1 inhibitor RAD001/everolimus, displayed reduced protein levels of Mcl-1 under basal conditions, and failed to upregulate Mcl-1 protein expression following treatment with ABT-263, a pharmacological inhibitor of Bcl-2 and Bcl-xL. Although treatment with ABT-263 alone did not sustain apoptosis in tumor cells in culture or in vivo, ABT-263 plus RAD001 increased apoptosis to a greater extent than either agent used alone. Similarly, combined use of the selective Mcl-1 inhibitor VU661013 with ABT-263 resulted in tumor cell apoptosis and diminished tumor growth in vivo. These findings suggest that rapid Mcl-1 translation drives ABT-263 resistance, but can be combated directly using emerging Mcl-1 inhibitors, or indirectly through existing and approved mTOR inhibitors.

5.
Oncotarget ; 10(24): 2338-2339, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-31040925
6.
Cancer Res ; 79(1): 171-182, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30413412

RESUMEN

Efferocytosis is the process by which apoptotic cells are cleared from tissue by phagocytic cells. The removal of apoptotic cells prevents them from undergoing secondary necrosis and releasing their inflammation-inducing intracellular contents. Efferocytosis also limits tissue damage by increasing immunosuppressive cytokines and leukocytes and maintains tissue homeostasis by promoting tolerance to antigens derived from apoptotic cells. Thus, tumor cell efferocytosis following cytotoxic cancer treatment could impart tolerance to tumor cells evading treatment-induced apoptosis with deleterious consequences in tumor residual disease. We report here that efferocytosis cleared apoptotic tumor cells in residual disease of lapatinib-treated HER2+ mammary tumors in MMTV-Neu mice, increased immunosuppressive cytokines, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). Blockade of efferocytosis induced secondary necrosis of apoptotic cells, but failed to prevent increased tumor MDSCs, Treg, and immunosuppressive cytokines. We found that efferocytosis stimulated expression of IFN-γ, which stimulated the expression of indoleamine-2,3-dioxegenase (IDO) 1, an immune regulator known for driving maternal-fetal antigen tolerance. Combined inhibition of efferocytosis and IDO1 in tumor residual disease decreased apoptotic cell- and necrotic cell-induced immunosuppressive phenotypes, blocked tumor metastasis, and caused tumor regression in 60% of MMTV-Neu mice. This suggests that apoptotic and necrotic tumor cells, via efferocytosis and IDO1, respectively, promote tumor 'homeostasis' and progression. SIGNIFICANCE: These findings show in a model of HER2+ breast cancer that necrosis secondary to impaired efferocytosis activates IDO1 to drive immunosuppression and tumor progression.


Asunto(s)
Apoptosis , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Mamarias Experimentales/patología , Necrosis , Linfocitos T Reguladores/patología , Tirosina Quinasa c-Mer/metabolismo , Animales , Antineoplásicos/farmacología , Femenino , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Lapatinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Fagocitosis , Receptor ErbB-2/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/inmunología , Tirosina Quinasa c-Mer/genética
7.
Cancer Res ; 78(21): 6183-6195, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224377

RESUMEN

Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/DDX58) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment in vivo Significance: These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. Cancer Res; 78(21); 6183-95. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Proteína 58 DEAD Box/metabolismo , Regulación Neoplásica de la Expresión Génica , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Metástasis de la Neoplasia , Neoplasias/metabolismo , Piroptosis , Receptores Inmunológicos , Transducción de Señal , Microambiente Tumoral
8.
Trends Mol Med ; 24(8): 655-656, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30060834

RESUMEN

Chemotherapy is the most commonly prescribed treatment for patients with aggressive and lethal triple negative breast cancers (TNBCs), which often develop chemoresistance. A recent study combined single nucleus sequencing, single cell RNA sequencing, and evolutionary biology to understand how tumor cells use genetic and phenotypic diversity to evade the selective pressures of neoadjuvant chemotherapy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica , Resistencia a Antineoplásicos , Humanos , Terapia Neoadyuvante
9.
Oncotarget ; 9(48): 29007-29017, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29989043

RESUMEN

Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum. Approaches aimed at intrinsic cellular immunity in the tumor microenvironment are less understood, but are of intense interest, based on their ability to induce tumor cell apoptosis while orchestrating innate and adaptive immune responses against tumor antigens. The intrinsic immune response is initiated by ancient, highly conserved intracellular proteins that detect viral infection. For example, the RIG-I-like receptors (RLRs), a family of related RNA helicases, detect viral oligonucleotide patterns of certain RNA viruses. RLR activation induces immunogenic cell death of virally infected cells, accompanied by increased inflammatory cytokine production, antigen presentation, and antigen-directed immunity against virus antigens. Approaches aimed at non-infectious RIG-I activation in cancers are being tested as a treatment option, with the goal of inducing immunogenic tumor cell death, stimulating production of pro-inflammatory cytokines, enhancing tumor neoantigen presentation, and potently increasing cytotoxic activity of tumor infiltrating lymphocytes. These studies are finding success in several pre-clinical models, and are entering early phases of clinical trial. Here, we review pre-clinical studies of RLR agonists, including the successes and challenges currently faced RLR agonists on the path to clinical translation.

10.
Cell Death Dis ; 9(2): 21, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343814

RESUMEN

Estrogen receptor-α positive (ERα+) breast cancer accounts for approximately 70-80% of the nearly 25,0000 new cases of breast cancer diagnosed in the US each year. Endocrine-targeted therapies (those that block ERα activity) serve as the first line of treatment in most cases. Despite the proven benefit of endocrine therapies, however, ERα+ breast tumors can develop resistance to endocrine therapy, causing disease progression or relapse, particularly in the metastatic setting. Anti-apoptotic Bcl-2 family proteins enhance breast tumor cell survival, often promoting resistance to targeted therapies, including endocrine therapies. Herein, we investigated whether blockade of anti-apoptotic Bcl-2 family proteins could sensitize luminal breast cancers to anti-estrogen treatment. We used long-term estrogen deprivation (LTED) of human ERα+ breast cancer cell lines, an established model of sustained treatment with and acquired resistance to aromatase inhibitors (AIs), in combination with Bcl-2/Bcl-xL inhibition (ABT-263), finding that ABT-263 induced only limited tumor cell killing in LTED-selected cells in culture and in vivo. Interestingly, expression and activity of the Bcl-2-related factor Mcl-1 was increased in LTED cells. Genetic Mcl-1 ablation induced apoptosis in LTED-selected cells, and potently increased their sensitivity to ABT-263. Increased expression and activity of Mcl-1 was similarly seen in clinical breast tumor specimens treated with AI + the selective estrogen receptor downregulator fulvestrant. Delivery of Mcl-1 siRNA loaded into polymeric nanoparticles (MCL1 si-NPs) decreased Mcl-1 expression in LTED-selected and fulvestrant-treated cells, increasing tumor cell death and blocking tumor cell growth. These findings suggest that Mcl-1 upregulation in response to anti-estrogen treatment enhances tumor cell survival, decreasing response to therapeutic treatments. Therefore, strategies blocking Mcl-1 expression or activity used in combination with endocrine therapies would enhance tumor cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Antagonistas de Estrógenos/farmacología , Transducción de Señal/efectos de los fármacos , Compuestos de Anilina/farmacología , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fulvestrant/farmacología , Marcación de Gen , Humanos , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Receptores de Estrógenos/metabolismo , Sulfonamidas/farmacología , Regulación hacia Arriba/efectos de los fármacos , Proteína bcl-X/metabolismo
11.
Breast Cancer Res ; 19(1): 105, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886748

RESUMEN

BACKGROUND: During pregnancy, as the mammary gland prepares for synthesis and delivery of milk to newborns, a luminal mammary epithelial cell (MEC) subpopulation proliferates rapidly in response to systemic hormonal cues that activate STAT5A. While the receptor tyrosine kinase ErbB4 is required for STAT5A activation in MECs during pregnancy, it is unclear how ErbB3, a heterodimeric partner of ErbB4 and activator of phosphatidyl inositol-3 kinase (PI3K) signaling, contributes to lactogenic expansion of the mammary gland. METHODS: We assessed mRNA expression levels by expression microarray of mouse mammary glands harvested throughout pregnancy and lactation. To study the role of ErbB3 in mammary gland lactogenesis, we used transgenic mice expressing WAP-driven Cre recombinase to generate a mouse model in which conditional ErbB3 ablation occurred specifically in alveolar mammary epithelial cells (aMECs). RESULTS: Profiling of RNA from mouse MECs isolated throughout pregnancy revealed robust Erbb3 induction during mid-to-late pregnancy, a time point when aMECs proliferate rapidly and undergo differentiation to support milk production. Litters nursed by ErbB3 KO dams weighed significantly less when compared to litters nursed by ErbB3 WT dams. Further analysis revealed substantially reduced epithelial content, decreased aMEC proliferation, and increased aMEC cell death during late pregnancy. Consistent with the potent ability of ErbB3 to activate cell survival through the PI3K/Akt pathway, we found impaired Akt phosphorylation in ErbB3 KO samples, as well as impaired expression of STAT5A, a master regulator of lactogenesis. Constitutively active Akt rescued cell survival in ErbB3-depleted aMECs, but failed to restore STAT5A expression or activity. Interestingly, defects in growth and survival of ErbB3 KO aMECs as well as Akt phosphorylation, STAT5A activity, and expression of milk-encoding genes observed in ErbB3 KO MECs progressively improved between late pregnancy and lactation day 5. We found a compensatory upregulation of ErbB4 activity in ErbB3 KO mammary glands. Enforced ErbB4 expression alleviated the consequences of ErbB3 ablation in aMECs, while combined ablation of both ErbB3 and ErbB4 exaggerated the phenotype. CONCLUSIONS: These studies demonstrate that ErbB3, like ErbB4, enhances lactogenic expansion and differentiation of the mammary gland during pregnancy, through activation of Akt and STAT5A, two targets crucial for lactation.


Asunto(s)
Mama/citología , Mama/metabolismo , Diferenciación Celular/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Lactancia/genética , Receptor ErbB-3/genética , Alelos , Animales , Proliferación Celular/genética , Supervivencia Celular/genética , Femenino , Técnicas de Inactivación de Genes , Inmunohistoquímica , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal
12.
Mol Cancer Res ; 15(3): 259-268, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28039357

RESUMEN

An estimated 40,000 deaths will be attributed to breast cancer in 2016, underscoring the need for improved therapies. Evading cell death is a major hallmark of cancer, driving tumor progression and therapeutic resistance. To evade apoptosis, cancers use antiapoptotic Bcl-2 proteins to bind to and neutralize apoptotic activators, such as Bim. Investigation of antiapoptotic Bcl-2 family members in clinical breast cancer datasets revealed greater expression and more frequent gene amplification of MCL1 as compared with BCL2 or BCL2L1 (Bcl-xL) across three major molecular breast cancer subtypes, Luminal (A and B), HER2-enriched, and Basal-like. While Mcl-1 protein expression was elevated in estrogen receptor α (ERα)-positive and ERα-negative tumors as compared with normal breast, Mcl-1 staining was higher in ERα+ tumors. Targeted Mcl-1 blockade using RNAi increased caspase-mediated cell death in ERα+ breast cancer cells, resulting in sustained growth inhibition. In contrast, combined blockade of Bcl-2 and Bcl-xL only transiently induced apoptosis, as cells rapidly acclimated through Mcl-1 upregulation and enhanced Mcl-1 activity, as measured in situ using Mcl-1/Bim proximity ligation assays. Importantly, MCL1 gene expression levels correlated inversely with sensitivity to pharmacologic Bcl-2/Bcl-xL inhibition in luminal breast cancer cells, whereas no relationship was seen between the gene expression of BCL2 or BCL2L1 and sensitivity to Bcl-2/Bcl-xL inhibition. These results demonstrate that breast cancers rapidly deploy Mcl-1 to promote cell survival, particularly when challenged with blockade of other Bcl-2 family members, warranting the continued development of Mcl-1-selective inhibitors for targeted tumor cell killing.Implications: Mcl-1 levels predict breast cancer response to inhibitors targeting other Bcl-2 family members, and demonstrate the key role played by Mcl-1 in resistance to this drug class. Mol Cancer Res; 15(3); 259-68. ©2016 AACR.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteína bcl-X/antagonistas & inhibidores , Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sulfonamidas/farmacología , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...