Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Access ; 9: 85442-85454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34812397

RESUMEN

In this work we implement a COVID-19 infection detection system based on chest X-ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained with the use of the Monte Carlo dropout method.

3.
Neural Netw ; 20(10): 1095-108, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17904333

RESUMEN

The Recursive Deterministic Perceptron (RDP) feed-forward multilayer neural network is a generalisation of the single layer perceptron topology. This model is capable of solving any two-class classification problem as opposed to the single layer perceptron which can only solve classification problems dealing with linearly separable sets. For all classification problems, the construction of an RDP is done automatically and convergence is always guaranteed. Three methods for constructing RDP neural networks exist: Batch, Incremental, and Modular. The Batch method has been extensively tested and it has been shown to produce results comparable with those obtained with other neural network methods such as Back Propagation, Cascade Correlation, Rulex, and Ruleneg. However, no testing has been done before on the Incremental and Modular methods. Contrary to the Batch method, the complexity of these two methods is not NP-Complete. For the first time, a study on the three methods is presented. This study will allow the highlighting of the main advantages and disadvantages of each of these methods by comparing the results obtained while building RDP neural networks with the three methods in terms of the convergence time, the level of generalisation, and the topology size. The networks were trained and tested using the following standard benchmark classification datasets: IRIS, SOYBEAN, and Wisconsin Breast Cancer. The results obtained show the effectiveness of the Incremental and the Modular methods which are as good as that of the NP-Complete Batch method but with a much lower complexity level. The results obtained with the RDP are comparable to those obtained with the backpropagation and the Cascade Correlation algorithms.


Asunto(s)
Simulación por Computador , Redes Neurales de la Computación , Proyectos de Investigación , Humanos , Aprendizaje , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...