Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37755202

RESUMEN

Photothermal membrane distillation is a new-generation desalination process that can take advantage of the ability of specific materials to convert solar energy to heat at the membrane surface and thus to overcome temperature polarization. The development of appropriate photothermal membranes is challenging because many criteria need to be considered, including light to heat conversion, permeability and low wetting, and fouling, as well as cost. Based on our experience with wetting characterization, this study compares photothermal membranes prepared using different well-known or promising materials, i.e., silver nanoparticles (Ag NPs), carbon black, and molybdenum disulfide (MoS2), in terms of their structural properties, permeability, wettability, and wetting. Accordingly, membranes with different proportions of photothermal NPs are prepared and fully characterized in this study. Wetting is investigated using the detection of dissolved tracer intrusion (DDTI) method following membrane distillation operations with saline solutions. The advantages of MoS2 and carbon black-based photothermal membranes in comparison with polyvinylidene difluoride (PVDF) membranes include both a permeability increase and a less severe wetting mechanism, with lower wetting indicators in the short term. These materials are also much cheaper than Ag NPs, having higher permeabilities and presenting less severe wetting mechanisms.

2.
Membranes (Basel) ; 13(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37367803

RESUMEN

Herein, experimental and theoretical approaches were used to design a new composite membrane for desalination by pervaporation. The theoretical approaches demonstrate the possibility to reach high mass transfer coefficients quite close to those obtained with conventional porous membranes if two conditions are verified: (i) a dense layer with a low thickness and (ii) a support with a high-water permeability. For this purpose, several membranes with a cellulose triacetate (CTA) polymer were prepared and compared with a hydrophobic membrane prepared in a previous study. The composite membranes were tested for several feed conditions, i.e., pure water, brine and saline water containing a surfactant. The results show that, whatever the tested feed, no wetting occurred during several hours of desalination tests. In addition, a steady flux was obtained together with a very high salt rejection (close to 100%) for the CTA membranes. Lastly, the CTA composite membrane was tested with real seawater without any pretreatment. It was shown that the salt rejection was still very high (close to 99.5%) and that no wetting could be detected for several hours. This investigation opens a new direction to prepare specific and sustainable membranes for desalination by pervaporation.

3.
Membranes (Basel) ; 12(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36135855

RESUMEN

A series of mixed matrix membranes containing poly (ether-block-amide) Pebax 1657 as matrix and polyethylene glycol (PEG) and Zeolitic Imidazolate Framework-8 (ZIF-8) as additives, were prepared and tested for CO2 separation. The membranes were prepared by solvent evaporation method and were characterized by TGA, DSC, SEM, and gas permeation measurements. The effects of PEG and its molecular weight, and the percentage of ZIF-8 into Pebax matrix were investigated. The results showed that the addition of PEG to Pebax/ZIF-8 blends avoid the agglomeration of ZIF-8 particles. A synergic effect between PEG and ZIF was particularly observed for high ZIF-8 content, because the initial permeability of pristine Pebax was multiplied by three (from 54 to 161 Barrers) while keeping the CO2 selectivity (αCO2/N2 = 61, αCO2/CH4 = 12 and αCO2/O2 = 23). Finally, the mechanism of CO2 transport is essentially governed by the solubility of CO2 into the membranes. Therefore, this new Pebax/PEG/ZIF-8 system seems to be a promising approach to develop new selective membranes for CO2 with high permeability.

4.
Data Brief ; 35: 106943, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33816731

RESUMEN

The data contained in this publication refers to a new approach to design composite pervaporation membranes that could be useful in water treatment. The work is based on the rational prediction of the membrane mass transfer coefficient using the resistance in series model and the corresponding experimental membranes were tested with several aqueous solutions comparatively to a commercially available porous distillation membrane (PVDF). All the related data, i.e. permeation water fluxes and conductivity of the permeate, were collected for hours, in the range 3 to 7 h. The strategy was to develop pervaporation membranes by coating a porous PVDF support (122µm) with various dense layers (hydrophobic polymers: Teflon™ AF2400, PMP, PTMSP). The objective was to avoid definitely the wetting problem observed in membrane distillation while keeping approximately the permeance than the porous support. The data reported here are related to the surface property of the membranes (contact angles), to the mechanical resistance of the membranes, to the wetting phenomena observed directly and recorded by observing the variation of water flux through the membranes and to the conductivity of the water condensed at the permeate side.

5.
Membranes (Basel) ; 10(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331336

RESUMEN

The main objective of this paper is to study the effect of new air backwash on dead-end ultrafiltration of seawater with a pilot at semi-industrial scale (20 m3/day). To control membrane fouling, two different backwashes were used to clean the membrane: classical backwash (CB) and new air backwash (AB) that consists of injecting air into the membrane module before a classical backwash. To evaluate the efficiency of AB and CB, a resistance in series model was used to calculate each resistance: membrane (Rm), reversible (Rrev) and irreversible (Rirr). The variation of the seawater quality was considered by integrating the turbidity variation versus time. The results indicate clearly that AB was more performant than CB and frequency of AB/CB cycles was important to control membrane fouling. In this study, frequencies of 1/5 and 1/3 appear more efficient than 1/7 and 1/9. In addition, the operation conditions (flux and time of filtration) had an important role in maintaining membrane performance-whatever the variation of the seawater quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...