Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686032

RESUMEN

Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Animales , Ratas , GMP Cíclico , Hemoglobina Glucada , Hemo , Obesidad , Proteinuria , Insuficiencia Renal Crónica/tratamiento farmacológico , Ensayos Clínicos Fase II como Asunto
2.
Front Toxicol ; 4: 991590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211197

RESUMEN

Genotoxicity testing relies on the detection of gene mutations and chromosome damage and has been used in the genetic safety assessment of drugs and chemicals for decades. However, the results of standard genotoxicity tests are often difficult to interpret due to lack of mode of action information. The TGx-DDI transcriptomic biomarker provides mechanistic information on the DNA damage-inducing (DDI) capability of chemicals to aid in the interpretation of positive in vitro genotoxicity data. The CometChip® assay was developed to assess DNA strand breaks in a higher-throughput format. We paired the TGx-DDI biomarker with the CometChip® assay in TK6 cells to evaluate three model agents: nitrofurantoin (NIT), metronidazole (MTZ), and novobiocin (NOV). TGx-DDI was analyzed by two independent labs and technologies (nCounter® and TempO-Seq®). Although these anti-infective drugs are, or have been, used in human and/or veterinary medicine, the standard genotoxicity testing battery showed significant genetic safety findings. Specifically, NIT is a mutagen and causes chromosome damage, and MTZ and NOV cause chromosome damage in conventional in vitro tests. Herein, the TGx-DDI biomarker classified NIT and MTZ as non-DDI at all concentrations tested, suggesting that NIT's mutagenic activity is bacterial specific and that the observed chromosome damage by MTZ might be a consequence of in vitro test conditions. In contrast, NOV was classified as DDI at the second highest concentration tested, which is in line with the fact that NOV is a bacterial DNA-gyrase inhibitor that also affects topoisomerase II at high concentrations. The lack of DNA damage for NIT and MTZ was confirmed by the CometChip® results, which were negative for all three drugs except at overtly cytotoxic concentrations. This case study demonstrates the utility of combining the TGx-DDI biomarker and CometChip® to resolve conflicting genotoxicity data and provides further validation to support the reproducibility of the biomarker.

3.
Toxicol Sci ; 188(1): 4-16, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35404422

RESUMEN

There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.


Asunto(s)
Neoplasias , Roedores , Animales , Biomarcadores de Tumor/genética , Carcinogénesis , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Genómica , Neoplasias/inducido químicamente , Neoplasias/genética
4.
Toxicol Sci ; 187(1): 35-50, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35244176

RESUMEN

Micro-RNAs (miRNAs) are regulators of gene expression and play an important role in physiological homeostasis and disease. In biofluids, miRNAs can be found in protein complexes or in extracellular vesicles (EVs). Altered urinary miRNAs are reported as potential biomarkers for chronic kidney disease (CKD). In this context, we compared established urinary protein biomarkers for kidney injury with urinary miRNA profiles in obese ZSF1 and hypertensive renin transgenic rats. Additionally, the benefit of urinary EV enrichment was investigated in vivo and the potential association of urinary miRNAs with renal fibrosis in vitro. Kidney damage in both rat models was confirmed by histopathology, proteinuria, and increased levels of urinary protein biomarkers. In total, 290 miRNAs were elevated in obese ZSF1 rats compared with lean controls, whereas 38 miRNAs were altered in obese ZSF1 rats during 14-26 weeks of age. These 38 miRNAs correlated better with disease progression than established urinary protein biomarkers. MiRNAs increased in obese ZSF1 rats were associated with renal inflammation, fibrosis, and glomerular injury. Eight miRNAs were also changed in urinary EVs of renin transgenic rats, including one which might play a role in endothelial dysfunction. EV enrichment increased the number and detection level of several miRNAs implicated in renal fibrosis in vitro and in vivo. Our results show the benefit of EV enrichment for miRNA detection and the potential of total urine and urinary EV-associated miRNAs as biomarkers of altered kidney physiology, renal fibrosis and glomerular injury, and disease progression in hypertension and obesity-induced CKD.


Asunto(s)
Vesículas Extracelulares , Hipertensión , MicroARNs , Insuficiencia Renal Crónica , Animales , Biomarcadores/metabolismo , Progresión de la Enfermedad , Vesículas Extracelulares/metabolismo , Femenino , Fibrosis , Humanos , Hipertensión/metabolismo , Riñón/metabolismo , Masculino , MicroARNs/genética , Obesidad/metabolismo , Ratas , Renina/metabolismo
5.
Regul Toxicol Pharmacol ; 125: 105017, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34311056

RESUMEN

A cross-industry survey was conducted by EFPIA/IQ DruSafe in 2018 to provide information on photosafety evaluation of pharmaceuticals after implementation of ICH S10. This survey focused on the strategy utilized for photosafety risk assessment, the design of nonclinical (in vitro and in vivo) and clinical evaluations, the use of exposure margins in risk assessment, and regulatory interactions. The survey results indicated that a staged approach for phototoxicity assessment has been widely accepted by regulatory authorities globally. The OECD-based 3T3 NRU Phototoxicity Test is the most frequently used in vitro approach. Modifications to this assay suggested by ICH S10 are commonly applied. For in-vitro-positives, substantial margins from in vitro IC50 values under irradiation to Cmax (clinical) have enabled further development without the need for additional photosafety data. In vivo phototoxicity studies typically involve dosing rodents and exposing skin and eyes to simulated sunlight, and subsequently evaluating at least the skin for erythema and edema. However, no formal guidelines exist and protocols are less standardized across companies. A margin-of-safety approach (based on Cmax at NOAEL) has been successfully applied to support clinical development. Experience with dedicated clinical phototoxicity studies was limited, perhaps due to effective de-risking approaches employed based on ICH S10.


Asunto(s)
Dermatitis Fototóxica/patología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Organización para la Cooperación y el Desarrollo Económico/normas , Preparaciones Farmacéuticas/normas , Luz Solar/efectos adversos
6.
Crit Rev Toxicol ; 51(3): 264-282, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34038674

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.


Asunto(s)
Biomarcadores , MicroARNs , Toxicología , Humanos
7.
Toxicol Sci ; 180(1): 1-16, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33367795

RESUMEN

Drug-induced kidney injury (DIKI) is a major concern in both drug development and clinical practice. There is an unmet need for biomarkers of glomerular damage and more distal renal injury in the loop of Henle and the collecting duct (CD). A cross-laboratory program to identify and characterize urinary microRNA (miRNA) patterns reflecting tissue- or pathology-specific DIKI was conducted. The overall goal was to propose miRNA biomarker candidates for DIKI that could supplement information provided by protein kidney biomarkers in urine. Rats were treated with nephrotoxicants causing injury to distinct nephron segments: the glomerulus, proximal tubule, thick ascending limb (TAL) of the loop of Henle and CD. Meta-analysis identified miR-192-5p as a potential proximal tubule-specific urinary miRNA candidate. This result was supported by data obtained in laser capture microdissection nephron segments showing that miR-192-5p expression was enriched in the proximal tubule. Discriminative miRNAs including miR-221-3p and -222-3p were increased in urine from rats treated with TAL versus proximal tubule toxicants in accordance with their expression localization in the kidney. Urinary miR-210-3p increased up to 40-fold upon treatment with TAL toxicants and was also enriched in laser capture microdissection samples containing TAL and/or CD versus proximal tubule. miR-23a-3p was enriched in the glomerulus and was increased in urine from rats treated with doxorubicin, a glomerular toxicant, but not with toxicants affecting other nephron segments. Taken together these results suggest that urinary miRNA panels sourced from specific nephron regions may be useful to discriminate the pathology of toxicant-induced lesions in the kidney, thereby contributing to DIKI biomarker development needs for industry, clinical, and regulatory use.


Asunto(s)
MicroARNs , Preparaciones Farmacéuticas , Animales , Biomarcadores , Riñón , MicroARNs/genética , Nefronas , Ratas
8.
Regul Toxicol Pharmacol ; 110: 104526, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31726190

RESUMEN

Robust genomic approaches are now available to realize improvements in efficiencies and translational relevance of cancer risk assessments for drugs and chemicals. Mechanistic and pathway data generated via genomics provide opportunities to advance beyond historical reliance on apical endpoints of uncertain human relevance. Published research and regulatory evaluations include many examples for which genomic data have been applied to address cancer risk assessment as a health protection endpoint. The alignment of mature, robust, reproducible, and affordable technologies with increasing demands for reduced animal testing sets the stage for this important transition. We present our shared vision for change from leading scientists from academic, government, nonprofit, and industrial sectors and chemical and pharmaceutical safety applications. This call to action builds upon a 2017 workshop on "Advances and Roadblocks for Use of Genomics in Cancer Risk Assessment." The authors propose a path for implementation of innovative cancer risk assessment including incorporating genomic signatures to assess mechanistic relevance of carcinogenicity and enhanced use of genomics in benchmark dose and point of departure evaluations. Novel opportunities for the chemical and pharmaceutical sectors to combine expertise, resources, and objectives to achieve a common goal of improved human health protection are identified.


Asunto(s)
Carcinógenos/toxicidad , Neoplasias/inducido químicamente , Medición de Riesgo , Toxicogenética , Animales , Pruebas de Carcinogenicidad , Industria Química , Industria Farmacéutica , Humanos
9.
Arch Toxicol ; 93(9): 2603-2615, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324951

RESUMEN

The biguanide metformin, a widely used antidiabetic drug, has received great interest in oncology research in recent years after an epidemiological study showed a link between metformin treatment and a reduced cancer risk in diabetic patients. Since mitochondrial metabolism has become a target for possible cancer therapeutic approaches, especially for tumors relying on oxidative metabolism, mitochondrial complex I inhibition is under discussion to be responsible for the anti-cancer effect of metformin. Rotenone, a well-known strong mitochondrial complex I inhibitor, yet associated with toxic effects, has also shown anti-cancer activity. Thus, we compared metformin and phenformin, another biguanide previously on the market as antidiabetic, with rotenone, to elucidate potential mechanisms rendering biguanides apparently less toxic than rotenone. Therefore, we conducted in vivo rat studies with metformin and phenformin, based on an experimental design previously described for mechanistic investigations of the effects of rotenone, including blood and tissue analysis, histopathology and gene expression profiling. These investigations show that the mechanistic profile of phenformin appears similar to that of rotenone, yet at a quantitatively reduced level, whereas metformin displays only transient similarities after one day of treatment. A potential reason may be that metformin, but not rotenone or phenformin, self-limits its entry into mitochondria due to its molecular properties. Thus, our detailed molecular characterization of these compounds suggests that inhibition of mitochondrial functions can serve as target for an anti-cancer mode of action, but should be self-limited or balanced to some extent to avoid exhaustion of all energy stores.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo Energético/efectos de los fármacos , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Metformina/farmacología , Fenformina/farmacología , Rotenona/farmacología , Animales , Antineoplásicos/toxicidad , Relación Dosis-Respuesta a Droga , Gluconeogénesis/efectos de los fármacos , Ácido Láctico/sangre , Hígado/metabolismo , Masculino , Metformina/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Fenformina/toxicidad , Ratas Wistar , Rotenona/toxicidad , Transcriptoma/efectos de los fármacos
10.
Int J Radiat Oncol Biol Phys ; 105(2): 410-422, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31255687

RESUMEN

PURPOSE: Fibroblast growth factor receptor 2 (FGFR2) has been previously reported to be overexpressed in several types of cancer, whereas the expression in normal tissue is considered to be moderate to low. Thus, FGFR2 is regarded as an attractive tumor antigen for targeted alpha therapy. This study reports the evaluation of an FGFR2-targeted thorium-227 conjugate (FGFR2-TTC, BAY 2304058) comprising an anti-FGFR2 antibody, a chelator moiety covalently conjugated to the antibody, and the alpha particle-emitting radionuclide thorium-227. FGFR2-TTC was assessed as a monotherapy and in combination with the DNA damage response inhibitor ATRi BAY 1895344. METHODS AND MATERIALS: The in vitro cytotoxicity and mechanism of action were evaluated by determining cell viability, the DNA damage response marker γH2A.X, and cell cycle analyses. The in vivo efficacy was determined using human tumor xenograft models in nude mice. RESULTS: In vitro mechanistic assays demonstrated upregulation of γH2A.X and induction of cell cycle arrest in several FGFR2-expressing cancer cell lines after treatment with FGFR2-TTC. In vivo, FGFR2-TTC significantly inhibited tumor growth at a dose of 500 kBq/kg in the xenograft models NCI-H716, SNU-16, and MFM-223. By combining FGFR2-TTC with the ATR inhibitor BAY 1895344, an increased potency was observed in vitro, as were elevated levels of γH2A.X and inhibition of FGFR2-TTC-mediated cell cycle arrest. In the MFM-223 tumor xenograft model, combination of the ATRi BAY 1895344 with FGFR2-TTC resulted in significant tumor growth inhibition at doses at which the single agents had no effect. CONCLUSIONS: The data provide a mechanism-based rationale for combining the FGFR2-TTC with the ATRi BAY 1895344 as a new therapeutic approach for treatment of FGFR2-positive tumors from different cancer indications.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Neoplasias de la Mama/radioterapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Radioinmunoterapia/métodos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/uso terapéutico , Torio/uso terapéutico , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/uso terapéutico , Daño del ADN , Combinación de Medicamentos , Sinergismo Farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Histonas/metabolismo , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Ratones , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Torio/farmacocinética , Compuestos de Torio/uso terapéutico , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Arch Toxicol ; 93(6): 1609-1637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250071

RESUMEN

Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Administración Oral , Algoritmos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Dosis Máxima Tolerada , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Máquina de Vectores de Soporte
12.
Front Big Data ; 2: 36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33693359

RESUMEN

Genotoxicity testing is an essential component of the safety assessment paradigm required by regulatory agencies world-wide for analysis of drug candidates, and environmental and industrial chemicals. Current genotoxicity testing batteries feature a high incidence of irrelevant positive findings-particularly for in vitro chromosomal damage (CD) assays. The risk management of compounds with positive in vitro findings is a major challenge and requires complex, time consuming, and costly follow-up strategies including animal testing. Thus, regulators are urgently in need of new testing approaches to meet legislated mandates. Using machine learning, we identified a set of transcripts that responds predictably to DNA-damage in human cells that we refer to as the TGx-DDI biomarker, which was originally referred to as TGx-28.65. We proposed to use this biomarker in conjunction with current genotoxicity testing batteries to differentiate compounds with irrelevant "false" positive findings in the in vitro CD assays from true DNA damaging agents (i.e., for de-risking agents that are clastogenic in vitro but not in vivo). We validated the performance of the TGx-DDI biomarker to identify true DNA damaging agents, assessed intra- and inter- laboratory reproducibility, and cross-platform performance. Recently, to augment the application of this biomarker, we developed a high-throughput cell-based genotoxicity testing system using the NanoString nCounter® technology. Here, we review the status of TGx-DDI development, its integration in the genotoxicity testing paradigm, and progress to date in its qualification at the US Food and Drug Administration (FDA) as a drug development tool. If successfully validated and implemented, the TGx-DDI biomarker assay is expected to significantly augment the current strategy for the assessment of genotoxic hazards for drugs and chemicals.

13.
Arch Toxicol ; 92(12): 3517-3533, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30511339

RESUMEN

Transcriptomics is developing into an invaluable tool in toxicology. The aim of this study was, using a transcriptomics approach, to identify genes that respond similar to many different chemicals (including drugs and industrial compounds) in both rat liver in vivo and in cultivated hepatocytes. For this purpose, we analyzed Affymetrix microarray expression data from 162 compounds that were previously tested in a concentration-dependent manner in rat livers in vivo and in rat hepatocytes cultivated in sandwich culture. These data were obtained from the Japanese Toxicogenomics Project (TGP) and North Rhine-Westphalian (NRW) data sets, which represent 138 and 29 compounds, respectively, and have only 5 compounds in common between them. The in vitro gene expression data from the NRW data set were generated in the present study, while TGP is publicly available. For each of the data sets, the overlap between up- or down-regulated genes in vitro and in vivo was identified, and named in vitro-in vivo consensus genes. Interestingly, the in vivo-in vitro consensus genes overlapped to a remarkable extent between both data sets, and were 21-times (upregulated genes) or 12-times (down-regulated genes) enriched compared to random expectation. Finally, the genes in the TGP and NRW overlap were used to identify the upregulated genes with the highest compound coverage, resulting in a seven-gene set of Cyp1a1, Ugt2b1, Cdkn1a, Mdm2, Aldh1a1, Cyp4a3, and Ehhadh. This seven-gene set was then successfully tested with structural analogues of valproic acid that are not present in the TGP and NRW data sets. In conclusion, the seven-gene set identified in the present study responds similarly in vitro and in vivo to a wide range of different chemicals. Despite these promising results with the seven-gene set, transcriptomics with cultivated rat hepatocytes remains a challenge, because in general many genes are up- or downregulated by in vitro culture per se, respond differently to test compounds in vitro and in vivo, and/or show higher variability in the in vitro system compared to the corresponding in vivo data.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Pruebas de Toxicidad/métodos , Toxicogenética/métodos , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/genética , Expresión Génica , Perfilación de la Expresión Génica/métodos , Hígado/efectos de los fármacos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Ratas , Ratas Wistar , Regulación hacia Arriba/genética
14.
ALTEX ; 35(3): 353-378, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29697851

RESUMEN

A major reason for the current reproducibility crisis in the life sciences is the poor implementation of quality control measures and reporting standards. Improvement is needed, especially regarding increasingly complex in vitro methods. Good Cell Culture Practice (GCCP) was an effort from 1996 to 2005 to develop such minimum quality standards also applicable in academia. This paper summarizes recent key developments in in vitro cell culture and addresses the issues resulting for GCCP, e.g. the development of induced pluripotent stem cells (iPSCs) and gene-edited cells. It further deals with human stem-cell-derived models and bioengineering of organo-typic cell cultures, including organoids, organ-on-chip and human-on-chip approaches. Commercial vendors and cell banks have made human primary cells more widely available over the last decade, increasing their use, but also requiring specific guidance as to GCCP. The characterization of cell culture systems including high-content imaging and high-throughput measurement technologies increasingly combined with more complex cell and tissue cultures represent a further challenge for GCCP. The increasing use of gene editing techniques to generate and modify in vitro culture models also requires discussion of its impact on GCCP. International (often varying) legislations and market forces originating from the commercialization of cell and tissue products and technologies are further impacting on the need for the use of GCCP. This report summarizes the recommendations of the second of two workshops, held in Germany in December 2015, aiming map the challenge and organize the process or developing a revised GCCP 2.0.


Asunto(s)
Técnicas de Cultivo de Célula/normas , Guías como Asunto , Organoides , Células Madre Pluripotentes/fisiología , Alternativas a las Pruebas en Animales/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Educación , Alemania , Humanos , Técnicas In Vitro , Control de Calidad
15.
BMC Biotechnol ; 18(1): 6, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29391006

RESUMEN

BACKGROUND: Circulating microRNAs are undergoing exploratory use as safety biomarkers in drug development. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is one common approach used to quantitate levels of microRNAs in samples that includes the use of a standard curve of calibrators fit to a regression model. Guidelines are needed for setting assay quantitation thresholds that are appropriate for this method and to biomarker pre-validation. RESULTS: In this report, we develop two workflows for determining a lower limit of quantitation (LLOQ) for RT-qPCR assays of microRNAs in exploratory studies. One workflow is based on an error threshold calculated by a logistic model of the calibration curve data. The second workflow is based on a threshold set by the sample blank, which is the no template control for RT-qPCR. The two workflows are used to set lower thresholds of reportable microRNA levels for an example dataset in which miR-208a levels in biofluids are quantitated in a cardiac injury model. LLOQ thresholds set by either workflow are effective in filtering out microRNA values with large uncertainty estimates. CONCLUSIONS: Two workflows for LLOQ determinations are presented in this report that provide methods that are easy to implement in investigational studies of microRNA safety biomarkers and offer choices in levels of conservatism in setting lower limits of acceptable values that facilitate interpretation of results.


Asunto(s)
Límite de Detección , MicroARNs/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Calibración , Marcadores Genéticos , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/estadística & datos numéricos , Flujo de Trabajo
16.
Proc Natl Acad Sci U S A ; 114(51): E10881-E10889, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203651

RESUMEN

Interpretation of positive genotoxicity findings using the current in vitro testing battery is a major challenge to industry and regulatory agencies. These tests, especially mammalian cell assays, have high sensitivity but suffer from low specificity, leading to high rates of irrelevant positive findings (i.e., positive results in vitro that are not relevant to human cancer hazard). We developed an in vitro transcriptomic biomarker-based approach that provides biological relevance to positive genotoxicity assay data, particularly for in vitro chromosome damage assays, and propose its application for assessing the relevance of the in vitro positive results to carcinogenic hazard. The transcriptomic biomarker TGx-DDI (previously known as TGx-28.65) readily distinguishes DNA damage-inducing (DDI) agents from non-DDI agents. In this study, we demonstrated the ability of the biomarker to classify 45 test agents across a broad set of chemical classes as DDI or non-DDI. Furthermore, we assessed the biomarker's utility in derisking known irrelevant positive agents and evaluated its performance across analytical platforms. We correctly classified 90% (9 of 10) of chemicals with irrelevant positive findings in in vitro chromosome damage assays as negative. We developed a standardized experimental and analytical protocol for our transcriptomics biomarker, as well as an enhanced application of TGx-DDI for high-throughput cell-based genotoxicity testing using nCounter technology. This biomarker can be integrated in genetic hazard assessment as a follow-up to positive chromosome damage findings. In addition, we propose how it might be used in chemical screening and assessment. This approach offers an opportunity to significantly improve risk assessment and reduce cost.


Asunto(s)
Biomarcadores , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Pruebas de Mutagenicidad , Transcriptoma , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Células Cultivadas , Aberraciones Cromosómicas , Daño del ADN , Marcadores Genéticos , Humanos , Reproducibilidad de los Resultados , Medición de Riesgo
17.
Toxicology ; 386: 1-10, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28529062

RESUMEN

Recently, bile acids (BAs) were reported as promising markers for drug-induced liver injury (DILI). BAs have been suggested to correlate with hepatocellular and hepatobiliary damage; however a clear connection of BA patterns with different types of DILI remains to be established. To investigate if BAs can improve the assessment of liver injury, 20 specific BAs were quantitatively profiled via LC-MS/MS in plasma and liver tissue in a model of methapyrilene-induced liver injury in rats. Methapyrilene, a known hepatotoxin was dosed daily over 14-days at doses of 30 and 80mg/kg, followed by a recovery phase of 10days. Conventional preclinical safety endpoints were related to BA perturbations and to hepatic gene expression profiling for a mechanistic interpretation of effects. Histopathological signs of hepatocellular and hepatobiliary damage with significant changes of clinical chemistry markers were accompanied by significantly increased levels of indivdual BAs in plasma and liver tissue. BA perturbations were already evident at the earliest time point after 30mg/kg treatment, and thereby indicating better sensitivity than clinical chemistry parameters. Furthermore, the latter markers suggested recovery of liver injury, whereas BA levels in plasma and liver remained significantly elevated during the recovery phase, in line with persistent histopathological findings of bile duct hyperplasia (BDH) and bile pigment deposition. Gene expression profiling revealed downregulation of genes involved in BA synthesis (AMACR, BAAT, ACOX2) and hepatocellular uptake (NTCP, OATs), and upregulation for efflux transporters (MRP2, MRP4), suggesting an adaptive hepatocellular protection mechanism against cytotoxic bile acid accumulation. In summary, our data suggests that specific BAs with high reliability such as cholic acid (CA) and chenodeoxycholic acid (CDCA) followed by glycocholic acid (GCA), taurocholic acid (TCA) and deoxycholic acid (DCA) can serve as additional biomarkers for hepatocellular/hepatobiliary damage in the liver in rat toxicity studies.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/efectos de los fármacos , Metapirileno/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/patología , Masculino , Metapirileno/administración & dosificación , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Regulación hacia Arriba/efectos de los fármacos
18.
Toxicol Sci ; 158(2): 367-378, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541575

RESUMEN

Derisking xenobiotic-induced nongenotoxic carcinogenesis (NGC) represents a significant challenge during the safety assessment of chemicals and therapeutic drugs. The identification of robust mechanism-based NGC biomarkers has the potential to enhance cancer hazard identification. We previously demonstrated Constitutive Androstane Receptor (CAR) and WNT signaling-dependent up-regulation of the pluripotency associated Dlk1-Dio3 imprinted gene cluster noncoding RNAs (ncRNAs) in the liver of mice treated with tumor-promoting doses of phenobarbital (PB). Here, we have compared phenotypic, transcriptional ,and proteomic data from wild-type, CAR/PXR double knock-out and CAR/PXR double humanized mice treated with either PB or chlordane, and show that hepatic Dlk1-Dio3 locus long ncRNAs are upregulated in a CAR/PXR-dependent manner by two structurally distinct CAR activators. We further explored the specificity of Dlk1-Dio3 locus ncRNAs as hepatic NGC biomarkers in mice treated with additional compounds working through distinct NGC modes of action. We propose that up-regulation of Dlk1-Dio3 cluster ncRNAs can serve as an early biomarker for CAR activator-induced nongenotoxic hepatocarcinogenesis and thus may contribute to mechanism-based assessments of carcinogenicity risk for chemicals and novel therapeutics.


Asunto(s)
Expresión Génica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Hígado/efectos de los fármacos , ARN Largo no Codificante/genética , Receptores Citoplasmáticos y Nucleares/agonistas , Xenobióticos/toxicidad , Animales , Biomarcadores/metabolismo , Proteínas de Unión al Calcio , Clordano/toxicidad , Receptor de Androstano Constitutivo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Fenobarbital/toxicidad , Regulación hacia Arriba/efectos de los fármacos
19.
Sci Rep ; 7: 45465, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374803

RESUMEN

Inhibitors of the mitochondrial respiratory chain complex I are suggested to exert anti-tumor activity on those tumors relying on oxidative metabolism and are therefore of interest to oncology research. Nevertheless, the safety profile of these inhibitors should be thoroughly assessed. Rotenone, a proven complex I inhibitor, has shown anti-carcinogenic activity in several studies. In this context rotenone was used in this study as a tool compound with the aim to identify suitable biomarker candidates and provide enhanced mechanistic insights into the molecular and cellular effects of complex I inhibitors. Rats were treated with 400 ppm rotenone daily for 1, 3 or 14 consecutive days followed by necropsy. Classical clinical endpoints, including hematology, clinical chemistry and histopathology with supporting investigations (FACS-analysis, enzymatic activity assays) were examined as well as gene expression analysis. Through these investigations, we identified liver, bone marrow and bone as target organs amongst approx. 40 organs evaluated at least histopathologically. Our results suggest blood analysis, bone marrow parameters, assessment of lactate in serum and glycogen in liver, and especially gene expression analysis in liver as useful parameters for an experimental model to help to characterize the profile of complex I inhibitors with respect to a tolerable risk-benefit balance.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/efectos de los fármacos , Rotenona/farmacología , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Expresión Génica/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Mitocondrias/metabolismo , Ratas , Ratas Wistar
20.
Arch Toxicol ; 91(10): 3427-3438, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28349193

RESUMEN

Genotoxic carcinogens pose great hazard to human health. Uncertainty of current risk assessment strategies and long latency periods between first carcinogen exposure and diagnosis of tumors have raised interest in predictive biomarkers. Initial DNA adduct formation is a necessary step for genotoxin induced carcinogenesis. However, as DNA adducts not always translate into tumorigenesis, their predictive value is limited. Here we hypothesize that the combined analysis of pro-mutagenic DNA adducts along with time-matched gene expression changes could serve as a superior prediction tool for genotoxic carcinogenesis. Eker rats, heterozygous for the tuberous sclerosis (Tsc2) tumor suppressor gene and thus highly susceptible towards genotoxic renal carcinogens, were continuously treated with the DNA alkylating carcinogen methylazoxymethanol acetate (MAMAc). Two weeks of MAMAc treatment resulted in a time-dependent increase of O6-methylguanine and N7-methylguanine adducts in the kidney cortex, which was however not reflected by significant expression changes of cyto-protective genes involved in DNA repair, cell cycle arrest or apoptosis. Instead, we found a transcriptional regulation of genes involved in the tumor-related MAPK, FoxO and TGF-beta pathways. Continuous MAMAc treatment for up to 6 months resulted in a mild but significant increase of cancerous lesions. In summary, the combined analysis of DNA adducts and early gene expression changes could serve as a suitable predictive tool for genotoxicant-induced carcinogenesis.


Asunto(s)
Aductos de ADN/análisis , Riñón/efectos de los fármacos , Acetato de Metilazoximetanol/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/patología , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación Neoplásica de la Expresión Génica , Guanina/análogos & derivados , Guanina/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Acetato de Metilazoximetanol/administración & dosificación , Ratas Mutantes , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...