RESUMEN
The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species.
Asunto(s)
Mimosa/microbiología , Rhizobium/genética , Simbiosis , Proteínas Bacterianas/genética , Secuencia de Bases , Evolución Biológica , Especificidad del Huésped , México , Filogenia , Nodulación de la Raíz de la Planta , Rhizobium/clasificación , Rhizobium/fisiología , Análisis de Secuencia de ADNRESUMEN
Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1â% (w/v) NaCl [optimum, 0â% (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2â% sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2â% to Burkholderia terrae KMY02(T), 97.1â% to Burkholderia phymatum STM815(T) and 97.1â% to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16â:â1) iso I and/or C(14â:â0) 3-OH), summed feature 3 (comprising C(16â:â1)ω7c and/or C(16â:â1)ω6c), C(16â:â0) , C(16â:â0) 3-OH, C(17â:â0) cyclo, C(18â:â1)ω7c and C(19â:â0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54â%. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) (â=âLMG 26031(T)â=âBCRC 80259(T)â=âKCTC 23308(T)).
Asunto(s)
Burkholderia/clasificación , Mimosa/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , Burkholderia/genética , Burkholderia/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Four strains, designated JPY-345(T), JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of Mimosa, Mimosa cordistipula and Mimosa misera, that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15-43 °C (optimum 35 °C), at pH 4-7 (optimum pH 5) and with 0-2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345(T) showed 97.3 % sequence similarity to the closest related species Burkholderia soli GP25-8(T), 97.3 % sequence similarity to Burkholderia caryophylli ATCC25418(T) and 97.1 % sequence similarity to Burkholderia kururiensis KP23(T). The predominant fatty acids of the strains were C(18 : 1)ω7c (36.1 %), C(16 : 0) (19.8 %) and summed feature 3, comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2-65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA-DNA hybridizations between the novel strain and recognized species of the genus Burkholderia yielded relatedness values of <51.8 %. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus Burkholderia, for which the name Burkholderia symbiotica sp. nov. is proposed. The type strain is JPY-345(T) (= LMG 26032(T) = BCRC 80258(T) = KCTC 23309(T)).
Asunto(s)
Burkholderia/clasificación , Mimosa/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brasil , Burkholderia/genética , Burkholderia/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Fosfolípidos/análisis , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
*An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.
Asunto(s)
Ecosistema , Mimosa/fisiología , Fijación del Nitrógeno/fisiología , Nodulación de la Raíz de la Planta/fisiología , Acetileno/metabolismo , Western Blotting , Brasil , Geografía , Mimosa/citología , Mimosa/microbiología , Mimosa/ultraestructura , Isótopos de Nitrógeno , Oxidación-Reducción , Oxidorreductasas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/ultraestructura , SimbiosisRESUMEN
Burkholderia has only recently been recognized as a potential nitrogen-fixing symbiont of legumes, but we find that the origins of symbiosis in Burkholderia are much deeper than previously suspected. We sampled 143 symbionts from 47 native species of Mimosa across 1800 km in central Brazil and found that 98% were Burkholderia. Gene sequences defined seven distinct and divergent species complexes within the genus Burkholderia. The symbiosis-related genes formed deep Burkholderia-specific clades, each specific to a species complex, implying that these genes diverged over a long period within Burkholderia without substantial horizontal gene transfer between species complexes.
Asunto(s)
Burkholderia/genética , Mimosa/microbiología , Filogenia , Simbiosis , Brasil , Burkholderia/clasificación , ADN Bacteriano/genética , Evolución Molecular , Genes Bacterianos , Geografía , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
Bacteria isolated from Mimosa nodules in Taiwan, Papua New Guinea, Mexico and Puerto Rico were identified as belonging to either the alpha- or beta-proteobacteria. The beta-proteobacterial Burkholderia and Cupriavidus strains formed effective symbioses with the common invasive species Mimosa diplotricha, M. pigra and M. pudica, but the alpha-proteobacterial Rhizobium etli and R. tropici strains produced a range of symbiotic phenotypes from no nodulation through ineffective to effective nodulation, depending on Mimosa species. Competition studies were performed between three of the alpha-proteobacteria (R. etli TJ167, R. tropici NGR181 and UPRM8021) and two of the beta-rhizobial symbionts (Burkholderia mimosarum PAS44 and Cupriavidus taiwanensis LMG19424) for nodulation of these invasive Mimosa species. Under flooded conditions, B. mimosarum PAS44 out-competed LMG19424 and all three alpha-proteobacteria to the point of exclusion. This advantage was not explained by initial inoculum levels, rates of bacterial growth, rhizobia-rhizobia growth inhibition or individual nodulation rate. However, the competitive domination of PAS44 over LMG19424 was reduced in the presence of nitrate for all three plant hosts. The largest significant effect was for M. pudica, in which LMG19424 formed 57% of the nodules in the presence of 0.5 mM potassium nitrate. In this host, ammonium also had a similar, but lesser, effect. Comparable results were also found using an N-containing soil mixture, and environmental N levels are therefore suggested as a factor in the competitive success of the bacterial symbiont in vivo.
Asunto(s)
Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/fisiología , Betaproteobacteria/aislamiento & purificación , Betaproteobacteria/fisiología , Mimosa/microbiología , Nitrógeno/metabolismo , Simbiosis , Alphaproteobacteria/clasificación , Alphaproteobacteria/crecimiento & desarrollo , Betaproteobacteria/clasificación , Betaproteobacteria/crecimiento & desarrollo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , México , Papúa Nueva Guinea , Filogenia , Puerto Rico , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , TaiwánRESUMEN
Two rhizobial strains, Br3407(T) and Br3405, were isolated from nitrogen-fixing nodules on the roots of Mimosa caesalpiniifolia, a legume tree native to Brazil. On the basis of 16S rRNA gene sequence similarities, both strains were shown previously to belong to the genus Burkholderia. A polyphasic approach, including DNA-DNA hybridizations, pulsed-field gel electrophoresis of whole-genome DNA profiles, whole-cell protein analyses, fatty acid methyl ester analysis and extensive biochemical characterization, was used to clarify the taxonomic position of these strains further; the strains are here classified within a novel species, for which the name Burkholderia sabiae sp. nov. is proposed. The type strain is strain Br3407(T) (=LMG 24235(T) =BCRC 17587(T)).
Asunto(s)
Burkholderia/clasificación , Burkholderia/aislamiento & purificación , Mimosa/microbiología , Proteínas Bacterianas/análisis , Técnicas de Tipificación Bacteriana , Brasil , Burkholderia/genética , Burkholderia/fisiología , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Campo Pulsado , Ácidos Grasos/análisis , Genes de ARNr , Datos de Secuencia Molecular , Fijación del Nitrógeno , Hibridación de Ácido Nucleico , Filogenia , Raíces de Plantas/microbiología , Proteoma/análisis , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido NucleicoRESUMEN
Three strains, Br3437(T), Br3461 and Br3470, were isolated from nitrogen-fixing nodules on the roots of Mimosa scabrella (Br3437(T)) and Mimosa bimucronata (Br3461, Br3470), both of which are woody legumes native to Brazil. On the basis of 16S rRNA gene sequence similarities, all the strains were shown previously to belong to the genus Burkholderia. A polyphasic approach, including DNA-DNA hybridizations, PFGE of whole-genome DNA profiles, whole-cell protein analyses, fatty acid methyl ester analysis and extensive biochemical characterization, was used to clarify the taxonomic position of these strains further; the strains are here classified within a novel species, for which the name Burkholderia nodosa sp. nov. is proposed. The type strain, Br3437(T) (=LMG 23741(T)=BCRC 17575(T)), was isolated from nodules of M. scabrella.
Asunto(s)
Burkholderia/clasificación , Burkholderia/aislamiento & purificación , Mimosa/microbiología , Raíces de Plantas/microbiología , Proteínas Bacterianas/análisis , Técnicas de Tipificación Bacteriana , Brasil , Burkholderia/química , Burkholderia/fisiología , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Campo Pulsado , Ácidos Grasos/análisis , Genes de ARNr , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , Proteoma/análisis , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido NucleicoRESUMEN
Fourteen strains were isolated from nitrogen-fixing nodules on the roots of plants of the genus Mimosa growing in Taiwan, Brazil and Venezuela. On the basis of 16S rRNA gene sequence similarities, all of the strains were previously shown to be closely related to each other and to belong to the genus Burkholderia. A polyphasic approach, including DNA-DNA reassociation, whole-cell protein analysis, fatty acid methyl ester analysis and extensive biochemical characterization, was used to clarify the taxonomic position of these strains: all 14 strains were classified as representing a novel species, for which the name Burkholderia mimosarum sp. nov. is proposed. The type strain, PAS44(T) (=LMG 23256(T) =BCRC 17516(T)), was isolated from Mimosa pigra nodules in Taiwan.
Asunto(s)
Burkholderia/clasificación , Mimosa/microbiología , Proteínas Bacterianas/análisis , Burkholderia/química , Burkholderia/aislamiento & purificación , Burkholderia/metabolismo , Carbono/metabolismo , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Oxidación-Reducción , Filogenia , Raíces de Plantas/microbiología , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Homología de Secuencia de Ácido Nucleico , América del Sur , Especificidad de la Especie , TaiwánRESUMEN
Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other beta-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known beta-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.